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A theoretical model of computation is proposed based on Lorentz quantum mechanics. Besides the standard qubits,
this model has an additional bit, which we call hyperbolic bit (or hybit in short). A set of basic logical gates are constructed
and their universality is proved. As an application, a search algorithm is designed for this computer model and is found to
be exponentially faster than Grover’s search algorithm.
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1. Introduction
The theoretical models of computation had long been re-

garded mistakenly as a pure mathematical structure. This view
was completely changed with the rise of quantum computer.
This is well summarized by Deutsch,[1] “computers are physi-
cal objects, · · · , what computers can or cannot do is determined
by laws of physics alone”. In other words, different physical
theories lead to different computational models with distinct
computing powers.

Currently, there are only two well established frameworks
of mechanics, classical mechanics (including Maxwell equa-
tions and general relativity) and quantum mechanics (includ-
ing quantum field theories).[2] Consequently, there are two
types of computers, classical computer and quantum com-
puter. It is naturally to conjecture new kinds of mechanics,
and use it as a base to establish new models of computers.

We are going to discuss a computational model based on
Lorentz quantum mechanics, where the dynamical evolution is
complex Lorentz transformation. It was proposed in Ref. [3]
as a generalization of the Bogoliubov–de Gennes equation;
similar mechanics was studied a long time ago by Pauli.[4]

The key feature in Lorentz mechanics, which has an indefi-
nite metric, is that only the states with the positive norms are
physically observable.

We introduce a bit called hyperbolic bit (or hybit in short).
The Lorentz computer so established consists of both qubits
and hybits, which are manipulated by a set of basic logical
gates. The universality of these gates is rigorously proved. By
construction quantum computer is a special case of Lorentz
computer, we thus expect the Lorentz computer to be more
powerful. This is indeed the case as we find a Lorentz search
algorithm that is more powerful than the Grover’s search
algorithm.[5] We will discuss the physical implementation of

our computer model as a single Lorentz system was recently
simulated with photons.[6]

2. Lorentz quantum mechanics
Lorentz quantum mechanics was discussed in Ref. [3] as

a generalization of the Bogoliubov–de Gennes equation.[3,7,8]

However, this kind of generalized quantum mechanics
with indefinite metric was studied a long time ago by
Pauli.[4] The related mathematical structure has been stud-
ied systematically.[9] In the following, we briefly review the
framework of Lorentz quantum mechanics, and then introduce
the composite systems consisting of quantum systems and
Lorentz systems, which are the key to our computer model.

2.1. General theory of Lorentz systems

Quantum states are vectors |ψ⟩ in a Hilbert space where
the inner product ⟨ψ|ψ⟩ is always non-negative. The states
|ψ) of Lorentz quantum mechanics are vectors of a linear
space with inner product defined as (ψ|η |ψ), which can be
negative. The indefinite metric η is a Hermitian matrix. When
η is an identity matrix, we recover the usual Hilbert space. In
our following notation, when | ) is used, η is not an identity
matrix; when | ⟩ is used, η is an identity matrix. The general
form of Lorentz quantum mechanics is given by

i
d
dt
|ψ) = ηĤ|ψ), (1)

where Ĥ is a Hermitian Hamiltonian.
We focus our attention to the special case η = ηm,n,

where[3]

ηm,n = diag{1,1, . . .1︸ ︷︷ ︸
m

,−1,−1, . . .−1︸ ︷︷ ︸
n

}. (2)

When m = n, Eq. (1) becomes the well-known Bogoliubov–de
Gennes equation.[3,7] The evolution operator �̂� can be written

†Corresponding author. E-mail: wubiao@pku.edu.cn
© 2023 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

040304-1

http://dx.doi.org/10.1088/1674-1056/acad6a
wubiao@pku.edu.cn
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B 32, 040304 (2023)

as

�̂�(t,0) = e−iηm,nĤt . (3)

It can be verified that �̂�†ηm,n�̂� = ηm,n. This means that �̂� is
a member of the generalized Lorentz group U(m,n). And we
call �̂� complex Lorentz transformation, under which the norm
of |ψ) is conserved,

d
dt
(ψ|ηm,n|ψ) = 0. (4)

The complex Lorentz transformation �̂� is thus called isomet-
ric operator in Ref. [9]. When n ̸= 0, the norm can be positive,
negative, and zero. The positive one will be normalized to 1
and the negative one will be normalized to −1.

2.2. Single Lorentz systems

There are two kinds of quantum systems, single systems
and composite systems. For example, although both of their
Hilbert spaces are of dimension four, spin-3/2 is a single sys-
tem and the system with two spin-1/2’s is a composite system.
Similarly, there are also two kinds of Lorentz systems, single
systems and composite systems. In single Lorentz systems,
only the states |φ) with positive norm (φ |ηm,n|φ) > 0 are re-
garded as physical and observable.

For a quantum state |ψ⟩, in a measurement regarding op-
erator A whose eigenstates are |ψ j⟩’s, one observes |ψ j⟩ with
probability |⟨ψ j|ψ⟩|2. For a Lorentz state |φ), consider a mea-
surement of Lorentz operator 𝐵. This operator 𝐵 is not nec-
essarily Hermitian; it usually has two sets of eigenstates, left
and right.[10–12] Here it is sufficient to consider only the right
eigenstates {|φ j), j = 1,2, . . . ,m} and {|ϕ j), j = 1,2, . . . ,n},
which satisfy (φ j|ηm,n|φ j) = 1 and (ϕ j|ηm,n|ϕ j) = −1. We
thus have the following expansion:

|φ) =
m

∑
j=1

a j|φ j)+
n

∑
j=1

b j|ϕ j). (5)

According to Lorentz quantum mechanics, for Lorentz state
|φ), one observes |φ j) with probability |a j|2/(∑m

j=1 |a j|2). The
|ϕ j)’s are not observable.

The above features of a single Lorentz system is a for-
malization of the results in the field of superfluidity. The
excitations of a superfluid are described by the Bogoliubov–
de Gennes equation, which has two sets of eigenmodes, one
half of them have positive norm and the other half have neg-
ative norm. The positive ones are quasi-particles of a su-
perfluid, such as phonons, and can be observed in experi-
ment while the negative half are unphysical and have never
been observed.[7,13] However, in the dynamics governed by the
Bogoliubov–de Gennes equation, these two modes are mixed
together and must be taken into account simultaneously to de-
scribe some phenomena, such as the transverse force acting on
a vortex.[8] More details of Lorentz quantum mechanics can be
found in Refs. [3,4].

2.3. Composite systems

We consider two basic composite systems, one consisting
of a quantum system Sq and a single Lorentz system Sl and
the other consisting of two single Lorentz systems Sl1 and Sl2.
Other composite systems can be readily derived from them.

For the first kind of composite system, if the metric of Sq

is ηm1,0 and the metric of Sl is ηm2,n, then the metric for the
composite system Sa is ηm1,0 ⊗ηm2,n. Namely, the compos-
ite system is also a Lorentz system with indefinite metric. If
the Hilbert space of Sq is spanned by {|ψ(i)

q ⟩, i = 1,2, . . . ,m1}
and the inner product space of Sa is spanned by {|φ ( j)

l ), j =

1,2, . . . ,m2} and {|ϕ( j)
l ), j = 1,2, . . . ,n}, then the composite

system Sa is spanned by |ψ(i)
q ⟩⊗|φ ( j)

l ) and |ψ(i)
q ⟩⊗|ϕ( j)

l ). For
a state |Φ) of the composite system Sa, it can be expanded as

|Φ) =
m1

∑
i=1

{ m2

∑
j=1

ai j|ψ(i)
q ⟩⊗ |φ ( j)

l )+
n

∑
j=1

bi j|ψ(i)
q ⟩⊗ |ϕ( j)

l )
}
. (6)

The probability of observing |ψ(i)
q ⟩⊗ |φ ( j)

l ) is

Pi j =
|ai j|2

∑
m1
i=1 ∑

m2
j=1 |ai j|2

. (7)

And |ψ(i)
q ⟩⊗ |ϕ( j)

l ) can not be observed.
For the second kind of composite system, if the metric of

Sl1 is ηm1,n1 and the metric of Sl2 is ηm2,n2 , then the metric for
the composite system Sb is ηm1,n1 ⊗ηm2,n2 . If the Hilbert space
of Sl1 is spanned by {|φ ( j)

l1 ), j = 1,2, . . . ,m1} and {|ϕ( j)
l1 ), j =

1,2, . . . ,n1}, and the inner product space of Sl2 is spanned by
{|φ ( j)

l2 ), j = 1,2, . . . ,m2} and {|ϕ( j)
l2 ), j = 1,2, . . . ,n2}, then the

composite system Sb is spanned by |φ ( j1)
l1 )⊗|φ ( j2)

l2 ), |φ ( j1)
l )⊗

|ϕ( j2)
l2 ), |ϕ( j1)

l1 )⊗|φ ( j2)
l2 ), and |ϕ( j1)

l1 )⊗|ϕ( j2)
l2 ). For a state |Φ)

of the composite system Sb, it can be expanded as

|Φ) =
m1

∑
j1=1

m2

∑
j2=1

a j1 j2 |φ
( j1)
l1 )⊗|φ ( j2)

l2 )

+
m1

∑
j1=1

n2

∑
j2=1

b j1 j2 |φ
( j1)
l1 )⊗|ϕ( j2)

l2 )

+
n1

∑
j1=1

m2

∑
j2=1

c j1 j2 |ϕ
( j1)
l1 )⊗|φ ( j2)

l2 )

+
n1

∑
j1=1

n2

∑
j2=1

d j1 j2 |ϕ
( j1)
l1 )⊗|ϕ( j2)

l2 ). (8)

The probability of observing |φ ( j1)
l1 )⊗|φ ( j2)

l2 ) is

Pj1 j2 =
|a j1 j2 |2

∑
m1
j1=1 ∑

m2
j2=1 |a j1 j2 |2

. (9)

And other states |φ ( j1)
l1 ) ⊗ |ϕ( j2)

l2 ), |ϕ( j1)
l1 ) ⊗ |φ ( j2)

l2 ), and
|ϕ( j1)

l1 )⊗|ϕ( j2)
l2 ) are not observable.
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We note two points before discussing computing model.
(1) Lorentz quantum mechanics is reduced to the usual quan-
tum mechanics when n = 0 or H is block-diagonal. As a re-
sult, quantum computer is a special case of Lorentz computer;
quantum communication is a special case of Lorentz commu-
nication. (2) There are also mixed states in Lorentz quantum
mechanics. However, they have not been rigorously defined
and their properties have not been examined. Consequently,
all the related issues, such as completely positive and trace-
preserving (CPTP) map, have not been addressed, either. In
this work, we focus on model of computing based on Lorentz
quantum mechanics and leave other issues to future work.

3. Model of Lorentz computing
DiVincenzo’s well-known five criteria describe require-

ments to construct a quantum computer in a real world.[14] In
this work we focus on a general computational model, neglect
detailed realization, and assume the system not affected by the
environment (so we only consider pure states below). So the
five DiVincenzo’s criteria can be simplified into three:

1. What represents information? (encoding)
2. How is the information processed? (computing)
3. How to extract the information? (decoding)
In a classical computer, the information is stored in bits.

The information is processed with classical logical gates. For
reversible classical computer, either the Fredkin gate or the
Toffoli gate can serve as the universal gate.[15] At the end of
computation, the output is recorded in a string of bits with each
bit in a definite state, 0 or 1.

In a quantum computer, the information is stored in qubits
and the information is processed with quantum logical gates.
There are three universal gates, Hadamard gate Ĥ, π/8 gate
T̂ , and CNOT gate. These gates are unitary transformations.
At the end of computation, the qubits are usually in a super-
position state where each qubit is not in a definite state. A
measurement is then performed so that each qubit falls into a
definite state, |0⟩ or |1⟩; the result is then extracted.[15]

People now have realized that the classical computer em-
bodies classical mechanics and the quantum computer is de-
rived from quantum mechanics.[2] It is thus natural to con-
struct a computer model based on Lorentz quantum mechanics
discussed above.

In a Lorentz quantum computer, the information is stored
in both qubits and hybits. This means that the Lorentz com-
puter is a composite system consisting of both quantum sys-
tems and Lorentz systems. The information is then processed
with a set of universal Lorentz quantum gates, which will be
presented in the next section. These universal gates are com-
plex Lorentz transformations and the usual quantum universal
gates are a subset. At the end of computation, as in quantum

computers, the qubits and hybits are in general in a superpo-
sition state where each qubit or hybit is not in a definite state.
A measurement is then performed to extract information. The
essential difference is that only states with |0)’s are observable.

It is clear by construction that the usual quantum com-
puter is a special case of Lorentz computer when hybits are
not used. This means that the Lorentz computer is poten-
tially more powerful than quantum computer. This is in-
deed the case. An algorithm of Lorentz computer is designed
for random search; it is exponentially faster than the Grover
algorithm.[5,15]

3.1. Hybits

There are two kinds of bits in a Lorentz computer. The
first is the familiar qubits, whose computational basis is made
of |0⟩ and |1⟩. The second is unique to Lorentz computer and
we call it hyperbolic bit (or hybit for short) as its state vector
stays on a hyperbolic surface. For a hybit, its general state is
represented as

|ψ) = a|0)+b|1) =
(

a
b

)
, (10)

where |0) and |1) are the computational basis satisfying

(0|η1,1|0) = 1, (1|η1,1|1) =−1, (1|η1,1|0) = 0. (11)

For a Lorentz computer made of Nq qubits and Nh hybits, its
state space is of dimension 2Nq+Nh and spanned by direct prod-
ucts

|ψ1⟩⊗ · · ·⊗ |ψNq⟩⊗ |ψ1)⊗·· ·⊗ |ψNh). (12)

Such a computer is a composite system with the following
metric:

η = η2,0 ⊗·· ·⊗η2,0︸ ︷︷ ︸
Nq

⊗η1,1 ⊗·· ·⊗η1,1︸ ︷︷ ︸
Nh

. (13)

The state |Φ) of a Lorentz computer can be expanded in the
computational basis

|Φ) =
2Nq+Nh

∑
j=1

a j|ψ j), (14)

where

|ψ j) = |d1⟩⊗ |d2⟩ · · · |dNq⟩⊗ |d1)⊗|d2) · · ·⊗ |dNh)

= |d1,d2 · · · ,dNq , d̄1, d̄2, . . . , d̄Nh⟩, (15)

with d j and d̄ j being either 0 or 1. In the above and from
now on, for simplicity, we used and will use |0̄⟩ = |0) and
|1̄⟩ = |1). According to Lorentz quantum mechanics intro-
duced in the last section, any component with at least one |1),
e.g., |1,0, . . . ,0, 1̄, 0̄, . . . , 0̄⟩, is not observable.

The simplest Lorentz computer consists of one qubit and
one hybit. Its general state is given by

|Φ) = a1|0, 0̄⟩+a2|0, 1̄⟩+a3|1, 0̄⟩+a4|1, 1̄⟩. (16)
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Upon measurement, the probability of observing |0, 0̄⟩ is
a1

2

a12+a32 while the probability of |1, 0̄⟩ is a3
2

a12+a32 . The other
two states, |0, 1̄⟩ and |1, 1̄⟩, are not observable.

Note that the case of Nh = 0 is completely equivalent to
quantum computer. In other words, quantum computer is a
special case of Lorentz computer just as reversible classical
computer is a special case of quantum computer.

3.2. Universal gates

With qubits and hybits, we are ready to design logical
gates for Lorentz computer. Similar to quantum computer,
there also exists a set of universal gates for Lorentz computer.
The universality, which we shall prove in Appendix A, ensures
that any operator can be approximated to an arbitrary precision
with the universal gates. In other words, one can use these
gates to construct a set of complex Lorentz transformations,
which is a dense set in all complex Lorentz transformations.

In the following text, σ̂x, σ̂y and σ̂z are the standard Pauli
operators with the following matrices:(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
, (17)

respectively.
We find that the Lorentz universal gates can

be divided into three sets, {Ĥ, T̂}, {τ̂, T̂}, and
{Λ̂

qq
1 (σ̂z) ,Λ̂

ql
1 (σ̂z) ,Λ̂

lq
1 (σ̂z) ,Λ̂

ll
1 (σ̂z)}. The first set {Ĥ, T̂}

consists of Hadamard gate Ĥ and π/8 gate T̂

Ĥ =
1√
2
(σ̂x + σ̂z) , (18)

T̂ = e−i π
8

(
e iπ/8 0

0 e−iπ/8

)
. (19)

These two operators are single qubit universal, which means
that they operate on single qubits and the combination of these
two gates can approximate any single qubit transformation to
an arbitrary precision. They are denoted by symbols in Fig. 2.

H

T

|ψ>

|ψ>

Fig. 1. Symbols for single qubit gates Ĥ and T̂ .

The second set operates on single hybits, consisting of
π/8 gate T̂ and gate τ̂

τ̂ =
√

2σ̂z + iσ̂x =

(√
2 i

i −
√

2

)
. (20)

It can be verified that τ̂†η1,1τ̂ = η1,1, (T̂ )†η1,1T̂ = η1,1. These
two gates are single hybit universal.

T

τ|ψ)

|ψ)

Fig. 2. Symbols for single hybit gates τ̂ and T̂ .

The operators in the last set, Λ̂
qq
1 (σ̂z), Λ̂

ql
1 (σ̂z), Λ̂

lq
1 (σ̂z)

and Λ̂ ll
1 (σ̂z), are four types of controlled-Z operators with the

same matrix representation
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (21)

They differ from each other by the control and target bits being
a qubit or a hybit as indicated by the superscript. Their circuits
are shown in Fig. 3. The subscript indicates that there is only
one control bit in the gate. We will discuss gates with more
than one control bits in Appendix A.

Z Z

Z Z

|ψ>

|φ>

|ψ↽

|φ>

|ψ↽

|φ↽

|ψ>

|φ↽

(a)

(c)

(b)

(d)

Fig. 3. Four different controlled-Z gates. (a) Circuit for Λ̂
qq
1 (σ̂z). (b) Circuit

for Λ̂
ql
1 (σ̂z). (c) Circuit for Λ̂

lq
1 (σ̂z). (d) Circuit for Λ̂ ll

1 (σ̂z).

We have chosen the controlled-Z gate instead of the
control-NOT (CNOT) gate, which is more frequently used in
quantum computing. The reason is that the CNOT gate may
fail to be a complex Lorentz transformation. For example, we
have

Λ̂
ql
1 (σ̂x)

† (η2,0 ⊗η1,1)Λ̂
ql
1 (σ̂x) ̸= η2,0 ⊗η1,1. (22)

This indicates that the CNOT gate is not a complex Lorentz
transformation when the control and target bits are qubit and
hybit, respectively. In this case, the CNOT gate does not
preserve the norm of the system, i.e., does not respect the
light cone. However, the control-Z gates are always complex
Lorentz transformations whatever the control and target bits
are.

4. Application: Search algorithm
For the Lorentz computer described in the previous sec-

tion, we propose a search algorithm which is faster than
Grover’s search algorithm for quantum computer.

We make use of n qubits for search along with one oracle
qubit and one hybit. The task is to find out the target state |x⟩
out of 2n vectors |00 . . .0⟩, |00 . . .1⟩, . . . , |11 . . .1⟩, which are
stored in the n qubits. The key in our algorithm is operator
Q̂ = ÔΛ̂

ql
1 (V̂ )Ô as shown in Fig. 4. The oracle operator Ô is

defined as[15]

Ô = (Î −|x⟩⟨x|)⊗ Îo + |x⟩⟨x|⊗ (|0o⟩⟨1o|+ |1o⟩⟨0o|), (23)
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where Îo is the identity operator for the oracle qubit. Suppose
the n+1 qubits are in the following state:

|Φ0⟩⊗ |0o⟩=
1√
N

( 2n−1

∑
j=0

| j⟩
)
⊗|0o⟩, (24)

where N = 2n. When it is acted upon by Ô, it becomes

Ô|Φ0⟩⊗ |0o⟩=
1√
N

( 2n−1

∑
j=0, j ̸=x

| j⟩⊗ |0o⟩+ |x⟩⊗ |1o⟩
)
. (25)

It shows that operator Ô flips the oracle qubit for the target
item |x⟩. The control gate Λ̂

ql
1 (V̂ ) has the oracle qubit as its

control bit and the hybit as its target bit with the Lorentz trans-
formation

V̂ =

(
cosh χ sinh χ

sinh χ cosh χ

)
, (26)

where χ is a positive constant. The algorithm goes as follows.
1. Initialize the computer with Hadamard gates on each

qubit (except the oracle qubit) and the state becomes

|Φ0⟩⊗ |0o⟩⊗ |0). (27)

2. Apply operator Q̂ on the state vector for k times, and
get Q̂k|Φ0)

3. Measure the n qubits and the hybit.

Oracle Oracle.
.
.

.

.

.

V

ı
|ψ>

Oracle qubit: |0o>

Hybit: |0o)

Fig. 4. Circuit for operator Q̂.

The time complexity of our algorithm is O(logN) as we
shall prove below. Making use of Ô and V̂ , we get

Q̂k (|Φ0⟩⊗ |0o⟩⊗ |0))
= (Î −|x⟩⟨x|+ cosh(kχ|x⟩⟨x|)|Φ0⟩⊗ |0o⟩⊗ |0)

+(sinh(kχ)|x⟩⟨x|)|Φ0⟩⊗ |0o⟩⊗ |1). (28)

According to the theory of Lorentz mechanics, the probability
of getting |x⟩ is

P =
1
N cosh2 kχ

1− 1
N + 1

N cosh2 kχ
. (29)

It is clear that P ≈ 1 when k ≈ 1
χ

lnN. So, the time complexity
of our algorithm is O(logN).

For quantum computer, Grover’s algorithm can be simu-
lated with Hamiltonians.[16–19] Similarly, our search algorithm
can also be implemented with a Hamiltonian

ℋ̂= |x⟩⟨x|⊗ (η1,1ℋ̂0), (30)

in which e iη1,1ℋ̂0 = V̂ .
This Lorentz search algorithm with exponential speedup

can be used to solve NP problems efficiently. Any computa-
tion problem can be converted into a search problem of find-
ing the proper solution out of all possible solutions. For an
NP problem, which has N = 2n possible solutions,[20] our al-
gorithm requires to invoke the oracle O(logN) = O(n) times,
while the time complexity for running the oracle is polynomial
O(np) by definition. As a result, the solution can be searched
and found in a polynomial time scale with our Lorentz search
algorithm. In other words, all NP problems can be solved effi-
ciently on a Lorentz computer. It is not clear whether NP-hard
problems, such as maximum independent set problem,[21,22]

can be solved efficiently on a Lorentz computer.

5. Discussion and conclusion
Our model of Lorentz computer may remind people of

standard quantum computer with postselection.[23] In the fi-
nal step, that only the components with |0) are observ-
able is equivalent to postselecting |0) and discarding |1).
For convenience, we call it hyper-postselection. (1) Hyper-
postselection is inspired by physics related to Bogoliubov–de
Genne equation,[7,8,13] not an arbitrary assumption or a math-
ematical trick. (2) It works only on hybits and does not work
on qubits. (3) Due to the search algorithm presented in the
last section, it is clear that our Lorentz computer with hyper-
postselection is at least as powerful as standard quantum com-
puter with postselection. The search algorithm is the first algo-
rithm that we found for the Lorentz computer; more powerful
algorithms may come up in the future.

There are other theoretical models of computer, which
can also outperform the standard quantum computer. One is
called digital memcomputing machine that is classical[24,25]

and the other is called quantum computer with closed timelike
curve (CTC).[26] They both allow dynamical evolution along a
closed timelike world line, which has not been found to exist in
nature. Adding nonlinearity to quantum mechanics may also
speed up computing.[27] However, this claim is very doubtful
as nonlinearity in classical mechanics has never been found to
speed up computing. The reason is that any nonlinear dynam-
ics in a short time step can be approximated by linear gates.
Nonlinear quantum dynamics can certainly be approximated
with linear gates as well. In fact, the effectiveness of quan-
tum computing with CTC or nonlinearity has been seriously
questioned.[28]
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In constructing our Lorentz computer, we have assumed
that the Lorentz mechanics is fundamentally different from
quantum mechanics in the spirit of how Pauli discussed this
kind of mechanics in 1940s.[4] However, as the Bogoliubov–
de Gennes equation is an approximation of a more fundamen-
tal quantum equation,[7,13] it is possible that our computer
model can be constructed approximately in experiments. In
fact, a Lorentz system was already demonstrated in a photon
experiment with postselection.[6]

In summary, we have set up a computational model based
on Lorentz mechanics. This model consists of both qubits and
hybits along with a set of universal logical gates. We have
designed a search algorithm for Lorentz computer, which is
exponentially faster than the Grover algorithm. This explicitly
shows that Lorentz computer is more powerful than quantum
computer.

Appendix A: Proof of university
This appendix gives a proof of universality for the follow-

ing three sets of gates:

{Ĥ, T̂}, {τ̂, T̂},

{Λ̂
qq
1 (σ̂z) ,Λ̂

ql
1 (σ̂z) ,Λ̂

lq
1 (σ̂z) ,Λ̂

ll
1 (σ̂z)}}.

The mathematical meaning of universality means that any op-
erator can be approximated to an arbitrary precision with the
universal gates.

Before laying out the proof in details in five steps, we
point out that {Ĥ, T̂} is single qubit universal as already shown
in quantum computation.[15,29]

A1. From {𝜏 ,𝑇 } to arbitrary single hybit operators

The {τ̂, T̂} is single qubit universal, which means that
any operator �̂� for single hybit can be approximated by matrix
product of a sequence of operator τ̂ and operator T̂ , for exam-
ple, τ̂ τ̂T̂ τ̂ · · · . Error of the approximation ||�̂� − τ̂ τ̂T̂ τ̂ · · · || can
be reduced to arbitrary small.

A single hybit operator is an element in group U(1,1) or
SU(1,1) represented by a matrix[3]

(
ζ γ*

γ ζ *

)
, ζ ∈ C,γ ∈ C (A1)

or as an exponential map e−iθ(iσ̂xnx+iσ̂yny+σ̂znz) = e iθ𝑛·�̂� in
which nx,ny,nz ∈ R,𝑛 = (inx, iny,nz), �̂� = (σ̂x, σ̂y, σ̂z). Note
that we make no distinction between U(m,n) and SU(m,n) for
the reason that an arbitrary overall phase is trivial.

The elements in SU(1,1) fall into three categories: space
rotation, lightlike rotation, and pseudo rotation.

e−iθ(iσ̂xnx+iσ̂yny+σ̂znz)

=



cosθ Î − i sinθ(iσ̂xnx + iσ̂yny + σ̂znz)
if−n2

x −n2
y +n2

z = 1,

Î − iθ(iσ̂xnx + iσ̂yny + σ̂znz)
if−n2

x −n2
y +n2

z = 0,

coshθ Î − isinhθ(iσ̂xnx + iσ̂yny + σ̂znz)
if−n2

x −n2
y +n2

z =−1.

(A2)

It is easy to verify that the operators {τ̂, T̂} are all space
rotation. But surprisingly, not only can we generate all the
space rotations in U(1,1) with them, but also all the lightlike
rotations and pseudo rotations.

Consider an operator

P̂ = T̂ τ̂

=
√

2sin
π

8
Î + i

(
iσ̂x cos

π

8
+ iσ̂y sin

π

8
+
√

2σ̂z cos
π

8

)
= cosθ0I + i sinθ0(iσ̂xnx + iσ̂yny + σ̂znz), (A3)

in which θ0 = arccos(
√

2sin π

8 ). It can be proved that θ0/π

is an irrational number according to the theory of cyclotomic
polynomial[30] by noticing the fact that the minimal polyno-
mial of e iθ0 in Z[n], x8−4x6−2x4−4x+1, is not a cyclotomic
polynomial. This means that, with an appropriate integer n,
P̂n = cosnθ0I + i sinnθ0(iσ̂xnx + iσ̂yny + σ̂znz) can approxi-
mate the space rotation along spacelike axis 𝑛1 = (inx, iny,nz)

for an arbitrary angle with arbitrary precision. Thus we get
space rotation e iθ𝑛1·�̂� for arbitrary θ .

Applying similarity transformations to this operator, we
can obtain another two space rotations

T̂ e iθ1𝑛1·�̂�T̂ † = e iθ1𝑛2·�̂�, (A4)

T̂ 2 e iθ2𝑛1·�̂�(T̂ 2)† = e iθ2𝑛3·�̂� (A5)

for arbitrary θ along axis 𝑛2 and 𝑛3. Noticing the linearly
independence of 𝑛1, 𝑛2 and 𝑛3, we can write any vector θ𝑛

into the linear superposition of them

θ𝑛= α1𝑛1 +α2𝑛2 +α3𝑛3. (A6)

So, any single hybit operator can be written as

e iθ𝑛·�̂� = e i(α1𝑛1·�̂�+α2𝑛2·�̂�+α3𝑛3·�̂�). (A7)

Applying Baker–Hausdorff formula with a large enough inte-
ger ℓ

e iθ𝑛·�̂� ≈ (e i α1
ℓ 𝑛1·�̂� e i α2

ℓ 𝑛2·�̂� e i α3
ℓ 𝑛3·�̂�)ℓ, (A8)

we can see that e iθ𝑛·�̂� is written in the form of product of
rotations along 𝑛1,𝑛2, or 𝑛3, which we already know how to
generate.
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A2. From controlled-𝑍 gate �̂�1 (�̂�𝑧) to controlled-𝑉 gate
�̂�1(�̂� )

For simplicity, we shall omit the superscripts and write
Λ̂

qq
k (v̂), Λ̂

ql
k (v̂), Λ̂

lq
k (v̂), or Λ̂ ll

k (v̂) as Λ̂k(v̂) when the control
and target bits are clear, or no confusion would arise. Here k
denotes the number of the control bits.

We are going to construct the controlled-V gate, Λ̂1(V̂ ),
where V̂ denotes an arbitrary unitary operator when the tar-
get bit is a qubit, or an arbitrary complex Lorentz operator
when the target bit is a hybit. If the target bit is qubit, cor-
responding to Figs. 3(a) and 3(c), the proof is exactly the
same as in quantum computing.[15,29] We only need to give
the proof when the target bit is a hybit, as shown in Figs. 3(b)
and 3(d). For these two cases, the metric is diag(1,−1,1,−1)
or diag(1,−1,−1,1).

With the following similarity transformation:

(Î ⊗V̂ )Λ̂1 (σ̂z)(Î ⊗V̂ )−1 = Λ̂1(V̂ σ̂zV̂−1), (A9)

it is clear that when V̂ goes through all the single hybit oper-
ators, Λ̂1 (σ̂ ·𝑛) for arbitrary 𝑛 ·𝑛 = 1 can be generated. We
consider three specific such operators Λ̂(σ̂z), Λ̂(σ̂z coshα +

iσ̂y sinhα), Λ̂(σ̂z coshβ + iσ̂x sinhβ ), in which α and β are
two unequal and nonzero real numbers. The product of these
three operators is

P̂′ = Λ̂1(σ̂z)Λ̂1(σ̂z coshα + iσ̂y sinhα)

Λ̂1(σ̂z coshβ + iσ̂x sinhβ )

= Λ̂1(i(sinhα sinhβ Î − i(coshα coshβσ̂z

+ i coshα sinhβσ̂x − i sinhα coshβσ̂y)))

= Λ̂1(i e−i arccos(sinhα sinhβ )�̂�·𝑛) (A10)

with

𝑛= (i coshα sinhβ ,−i sinhα coshβ ,sinhα sinhβ ). (A11)

If we choose α,β such that sinhα coshβ < 1 and
arccos(sinhα sinhβ )/π is irrational, we can generate
Λ̂1(e iθ �̂�·𝑛) for arbitrary θ with P̂′k. Then we can generate
Λ̂1(V̂ ) for all V̂ ∈ SU(1,1) using the same trick as the previ-
ous section.

And we notice that

(
1 0
0 e iφ

)
⊗ Î =


1 0 0 0
0 1 0 0
0 0 e iφ 0
0 0 0 e iφ

= Λ̂1(e iφ ). (A12)

So we have Λ̂1(e iφV̂ ) = Λ̂1(e iφ )Λ̂1(V̂ ), and thus obtain
Λ̂1(V̂0) for arbitrary V̂0 ∈U(1,1)

A3. From controlled-𝑉 gate �̂�1

(
�̂�
)

to controlled-𝑉 gate
�̂�𝑘(�̂� ) with 𝑘 control bits

We denote controlled-V gate with k control bits as Λ̂k(V̂ ),
and we are going to generate Λ̂k (σ̂z) for arbitrary positive in-
teger k and arbitrary type of control and target bits (qubit or

hybit). The following proof holds whether the bits are qubits,
hybits or both, so the superscript of Λ̂k(V̂ ) is omitted.

We are first to construct Λ̂2(V̂ ) for arbitrary V̂ . Λ̂2(V̂ ) is
an 8×8 matrix, which we denote as a 4×4 matrix with each
element being a 2×2 matrix. Consider operator Ŵ3(V̂ σ̂zV̂−1),
whose circuit representation is shown in Fig. A1; the subscript
indicates the number of relevant qubits and hybits is 3,

Ŵ3(V̂ σ̂zV̂−1) =


Î 0 0 0
0 V̂ σ̂zV̂−1 0 0
0 0 V̂ σ̂zV̂−1 0
0 0 0 Î

 . (A13)

/

V-1 Z Z V

W↼VσzV-1↽^^^

Fig. A1. Circuit for operator Ŵ3(V̂ σ̂zV̂−1).

The form of operator Ŵ3(V̂ σ̂zV̂−1) is similar to operator
Λ̂1(V̂ σ̂zV̂−1) in the previous section, then we can generate

Ŵ3(V̂0) =


Î 0 0 0
0 V̂0 0 0
0 0 V̂0 0
0 0 0 Î

 (A14)

for arbitrary V0 using the same technique. Specially we can
generate

Ŵ3(σ̂
− 1

2
z ) =


Î 0 0 0

0 σ̂
− 1

2
z 0 0

0 0 σ̂
− 1

2
z 0

0 0 0 Î

 (A15)

with which we can construct Λ̂2(σ̂z) with the circuit in Fig. A2.

W↼σ-1/2↽^^ /

Z1/2 Z1/2 Z

z

Fig. A2. Circuit for operator Λ̂2(σ̂z).

^ ^ ^/

V-1 Z Z V

...{k↩

Wk⇁↼VσzV-1↽

Fig. A3. The k-control-bit version of Fig. A1.

We have already obtained operator Λ̂2(σ̂z) using Λ̂1(σ̂z)

and single qubit or single hybit operators. Applying the same
steps, we can generate Λ̂k+1(σ̂z) using Λ̂k(σ̂z) and single qubit
or hybit operators, as described in Figs. A3 and A4. With
Λ̂k(σ̂z), Λ̂k+1(V̂ ) can be straightforwardly generated in the
same way as generating Λ̂1(V̂ ) with Λ̂1(σ̂z).
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/

Z1/2 Z1/2 Z

Wk⇁↼σ-1/2↽

... ...{k↩

z
^ ^

Fig. A4. The k-control-bit version of Fig. A2.

A4. Arbitrary operators can be factorized into two-level
matrices

Similar to standard quantum computing,[15] two-level
matrix can be defined in U(m,n). We denote it as b̂i, j(V̂ ), in
which 1 ≤ i < j ≤ m+n and

V̂ =

(
V11 V12
V21 V22

)
(A16)

is a unitary or complex Lorentz matrix. b̂i, j(V̂ ) can be repre-
sented in the form of matrix

i-th row

j-th row



1 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

...
...

...
...

...
...

0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 · · · 0 V11 0 · · · 0 V12 0 · · · 0
0 · · · 0 0 1 · · · 0 0 0 · · · 0
...

...
...

...
...

. . .
...

...
...

...
...

0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 · · · 0 V21 0 · · · 0 V22 0 · · · 0
0 · · · 0 0 0 · · · 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 1



. (A17)

When restricted on the subspace spanned by {|i⟩, | j⟩}, we sim-
ply have b̂i, j(V̂ ) = V̂ . As b̂i, j(V̂ ) ∈ U(m,n), V̂ is a complex
Lorentz matrix matrix when 1 ≤ i ≤ m < j ≤ m+n, or a uni-
tary matrix otherwise. When restricted on the orthogonal com-
plement space b̂i, j(V̂ ) is an identity matrix.

For any operator A ∈U(m,n) in which m ≥ 2 and n ≥ 2,
consider A(1) = b̂1,2(V̂ )A , which is in the form of matrix(

A(1)
1,1

A(1)
2,1

)
=

(
V11 V12
−V *

12 V *
11

)(
A1,1
A2,1

)
, (A18)

where Ak,l and A(1)
k,l denote the k-th row l-th column element of

matrix A and A(1), respectively (A(2)
k,l , A(3)

k,l in the following text

are similar). We can choose appropriate V̂ such that A(1)
2,1 = 0.

We continue this procedure with b̂1, j ( j = 3,4, . . . ,m) and ob-
tain A(2) = b̂1,m · · · b̂1,3A(1) such that A(2)

2,1 = · · · = A(2)
m,1 = 0.

To make A j,1 = 0 with j > m+ 1, we can use a different set
of b̂i, j and obtain A(3) = b̂m+1,m+n · · · b̂m+1,m+2A(2) such that
A(3)

2,1 = · · · = A(3)
m,1 = A(3)

m+2,1 = · · · = A(3)
m+n,1 = 0. To make

Am+1,1 = 0, we use A(4) = b̂1,m+1(V̂ ′)A(3),(
A(4)

1,1

A(4)
m+1,1

)
=

(
V ′

11 V ′
12

V ′*
12 V ′*

11

)(
A(3)

1,1

A(3)
m+1,1

)
. (A19)

By choosing appropriate values for the elements of V̂ ′, we can
make A(4)

1,1 = 1 and A(4)
m+1,1 = 0, for the reason that

A(3)
1,1

2
−A(3)

m+1,1
2
=

m

∑
i=1

A(3)
i,1

2
−

m+n

∑
i=m+1

A(3)
i,1

2
= 1. (A20)

We now have A1,2 = · · · = A1,m+n = 0. As column vectors in
matrix A(4) are orthogonal to each other, we have A2,1 = · · ·=
Am+n,1 = 0. Thus we have reduced matrix A into a block ma-
trix 

1 0 · · · 0
0
... U(m−1,n)
0

 . (A21)

By induction, we can reduce A into an identity matrix Î using
a series of two-level matrices. This is equivalent to the asser-
tion that arbitrary operators A can be factorized into a series of
two-level matrices.

A5. From �̂�𝑁−1(�̂� ) to two-level matrices

In this section, our goal is to construct all the two-level
matrices using Λ̂N−1(V̂ ), where N is the total number of qubits
and hybits. The following proof holds whether the bits are
qubits, hybits, or both, so the superscripts of Λ̂k(V̂ ) are omit-
ted.

We notice that Λ̂N−1(V̂ ) can be considered as a special
kind of two-level matrices b̂i, j where only one qubit (or hy-
bit) between |i⟩ and | j⟩ is different, while the rest of qubits (or
hybits) are all |1⟩ (or |1)), for example,

|i⟩= |1,1,0,1,1⟩⊗ |1,1), (A22)

| j⟩= |1,1,1,1,1⟩⊗ |1,1). (A23)

Different from Λ̂N−1(V̂ ), b̂i, j of which the Hamming dis-
tance between i and j is 1 also requires only one different qubit
(or hybit) between |i⟩ and | j⟩ but imposes no constraint on the
rest of the qubits and hybits, for example,

|i⟩= |1,1,0,0,0⟩⊗ |1,0), (A24)

| j⟩= |1,1,1,0,0⟩⊗ |1,0). (A25)

For the case of N = 2, only b̂i, j(σ̂z) with |i⟩= |00⟩, | j⟩= |01⟩
is not a controlled-Z gate Λ1(σz). It can be constructed as

b̂i, j(σ̂z) = Λ̂1(σ̂z)(Î ⊗ σ̂z). (A26)

Noticing that b̂i, j with the Hamming distance between |i⟩ and
| j⟩ equal to 1 can be obtained by exchanging |0⟩ and |1⟩ (or |0)
and |1)) for some qubits (hybits), we can obtain such b̂i, j(V̂ )

for N > 2 by applying steps in Appendix A2 but substitute

040304-8



Chin. Phys. B 32, 040304 (2023)

some Λ̂1(σ̂z) operators with the operator in Eq. (A26), as the
substitution essentially exchange |0⟩ and |1⟩ (or |0) and |1))
for the control bits.

Now we are going to generate b̂i, j of which the Hamming
distance between i and j is 2. We can always find a basis vec-
tor |k⟩ such that the Hamming distances between i,k and j,k
are both 1, and we are to generate b̂i, j by b̂i,k and b̂ j,k. Con-
sidering the subspace spanned by {|i⟩, | j⟩, |k⟩}, by symmentry,
we only need to consider three kinds of metric: diag(1,1,1) ,
diag(−1,1,1) and diag(1,1,−1).

For each case, we construct b̂i, j with b̂i,k and b̂ j,k in the
form of matrix restricted on the subspace. If the metric is
diag(1,1,1), ζ γ 0

−γ* ζ * 0
0 0 1

=

 1 0 0
0 0 1
0 1 0

 ζ 0 γ

0 1 0
−γ* 0 ζ *

 1 0 0
0 0 1
0 1 0

 .

(A27)

If the metric is diag(−1,1,1), ζ γ 0
γ* ζ * 0
0 0 1

=

 1 0 0
0 0 1
0 1 0

 ζ 0 γ

0 1 0
γ* 0 ζ *

 1 0 0
0 0 1
0 1 0

 . (A28)

If the metric is diag(1,1,−1), ζ γ 0
−γ* ζ * 0

0 0 1



=


√

1+γ2

ζ * 0 −
√

2 γ

ζ *

0 1 0

−
√

2 γ*

ζ
0

√
1+γ2

ζ


 1 0 0

0
√

2 −1
0 −1

√
2



√

1+ γ2 0 γ

0 1 0
γ* 0

√
1+ γ2




1 0 0

0
√

2
ζ

√
1+γ2

ζ *

0
√

1+γ2

ζ

√
2

ζ *

 . (A29)

In above identities, ζ and γ are arbitrary complex numbers.
By induction, we can generate b̂i, j of which the Hamming dis-
tance between i and j is arbitrary. This concludes the proof.
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