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Quantum chaos and physical distance between quantum states
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We show that there is genuine chaos in quantum dynamics by introducing a physical distance between two
quantum states. Qualitatively different from existing distances for quantum states, for example, the Fubini-Study
distance, the physical distance between two mutually orthogonal quantum states, can be very small. As a result,
two quantum states, which are initially very close by physical distance, can diverge from each other during the
ensuing quantum dynamical evolution. We are able to use physical distance to define the quantum Lyapunov
exponent and the quantum chaos measure. The latter leads to a quantum analog of the classical Poincaré section,
which maps out the regions where quantum dynamics is regular and the regions where it is chaotic. Three
different systems—a kicked rotor, the three-site Bose-Hubbard model, and the spin-1/2 XXZ model—are used
to illustrate our results.
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I. INTRODUCTION

As classical equations of motion are in general nonlinear,
there are mainly two types of classical motion: regular motion
that does not depend sensitively on initial conditions, and
chaotic motion that does [1]. In contrast, the Schrödinger
equation is linear, and there seems to be no true chaotic
motion in quantum dynamics [2,3]. However, this contradicts
the fact that there are also two types of quantum motion:
regular and chaotic. Shown in Fig. 1 is one example. With
two different initial conditions that are both well-localized, the
quantum kicked rotor exhibits two very different dynamics:
after 50 kicks, one wave packet remains well-localized; the
other spreads out widely with an irregular pattern.

This widely held misunderstanding is rooted in the fact
that people use the inner product 〈ψ1|ψ2〉 to measure the
difference between two quantum states |ψ1〉 and |ψ2〉, such
as in the Fubini-Study distance [4] and many others [5–11].
As a result, two mutually orthogonal quantum states always
have the same distance. This is clearly inadequate in at least
two aspects. (i) These inner-product-based distances do not
reduce to the distance between two classical states at the
semiclassical limit. (ii) These distances are not consistent
with our physical intuition in many familiar situations. One
example is shown in Fig. 2, where there are three well-
localized wave packets that are orthogonal to each other. It
is intuitively evident that the wave packet at x2 is physically
closer to the one at x3 than the one at x1. Another exam-
ple is a one-dimensional spin chain. Suppose that we have
three states, |φ1〉 = |1, 1, 1, . . . , 1〉, |φ2〉 = |−1, 1, . . . , 1〉,
and |φ3〉 = |−1,−1, . . . ,−1, 1, 1, · · · , 1〉, which are orthog-
onal to each other. It is clear that |φ1〉 and |φ2〉 are very close
to each other physically as they have almost the same mag-
netization, while |φ1〉 and |φ3〉 are very different from each

other physically. The Hamming distance [12] would be more
appropriate. Recently, some other works have also tried to go
beyond the inner product to quantify the difference between
quantum states [13,14].

In this work, we show that one can distinguish these two
different types of quantum motions shown in Fig. 1 by in-
troducing a physical distance between quantum states based
on the Wasserstein distance [15,16]. Due to the use of the
distance defined between basis vectors, our quantum distance
is capable of quantifying the physical difference between
quantum states. In particular, (i) it can reduce to the distance
between classical states at the semiclassical limit; (ii) it is
not conserved during the quantum dynamical evolution; and
(iii) it can be small or large between a pair of mutually or-
thogonal quantum states. This is qualitatively different from
existing distances defined between quantum states, for ex-
ample, Fubini-Study distance [4]. As a result, two quantum
states, which are orthogonal to each other and initially close
in physical distance, can dynamically diverge from each other
in physical distance despite the fact that the inner product
stays at zero (for a more detailed discussion, see the beginning
of Sec. IV). This physical distance allows us to define two
parameters, namely the quantum Lyapunov exponent and the
quantum chaos measure, to characterize quantum motion. In
particular, the quantum chaos measure can be used to con-
struct the quantum analog of the classical Poincaré section,
where we can map out the regions where the quantum motion
is regular (e.g., see Fig. 5), and the regions where the quantum
motion is chaotic and depends sensitively on the initial condi-
tion (e.g., see Fig. 5). This quantum Poincaré section reduces
to its classical counterpart at the semiclassical limit.

We will introduce our definition of quantum physical dis-
tance in Sec. II. The soundness and usefulness of our distance
is then illustrated with examples in Sec. III. In Sec. IV, with
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FIG. 1. Two distinct dynamical evolutions of a quantum kicked
rotor with kicking strength K = 4.7 and resolution m = 20, i.e., an
effective Planck constant h̄eff = 2π/m2 ≈ 0.016. The white dotted
lines illustrate the integrable islands for classical dynamics. These
two dynamical evolutions are generated by the same Hamiltonian
but with different initial conditions (different Wannier basis states).
See Sec. V A for details.

quantum physical distance, we define two parameters, namely
the quantum Lyapunov exponent and the quantum chaos
measure. The former characterizes the short-time dynamical
behavior of a quantum state, while the latter characterizes the
long-time dynamical behavior of a quantum state. These con-
cepts are numerically illustrated with three different quantum
systems in Sec. V: (i) a kicked rotor, which is a system that has
a clear classical counterpart; (ii) a three-site Bose-Hubbard
model, whose classical counterpart is a mean-field theory; and
(iii) a spin chain, which does not have an obvious classical
counterpart. Finally, we discuss and conclude.

II. PHYSICAL DISTANCE BETWEEN QUANTUM STATES

Our physical distance between quantum states is based
on the Wasserstein distance, which is a distance function
defined between probability distributions on a metric space.
In computer science it is known as the earth mover’s dis-
tance, and it has been widely used in many fields [17,18]. To
define a Wasserstein distance, we need both a metric space

FIG. 2. Three well-localized wave packets at positions x1, x2, and
x3, respectively. There is no overlap between these wave packets.
Physically, the two wave packets on the right are closer to each other.

and a distribution function. To obtain them for a quantum
system, we choose a complete set of orthonormal bases B =
{|ξ1〉 , . . . , |ξn〉} and define the distance between the bases as
d (ξi, ξ j ). This gives us a metric space. When a given quan-
tum state |ψ〉 is expanded in terms of this basis, we have a
probability distribution on the set B,

pi(ψ ) = | 〈ξi| ψ〉|2, i = 1, . . . , n. (1)

Our physical distance between two quantum states |ψ1〉 , |ψ2〉
is the Wasserstein-λ distance between distributions pi(ψ1)
and p j (ψ2),

Dλ(ψ1, ψ2) =
[

inf
P

∑
i, j

Pi jd
λ(ξi, ξ j )

]1/λ

, (2)

where λ is a positive integer and infP means the minimum
over all the distributions Pi j ∈ [0, 1] that satisfy

n∑
i=1

Pi j = p j (ψ2),
n∑

j=1

Pi j = pi(ψ1). (3)

It is clear that the above definition still works even when n is
infinite. For most of the cases studied in this work, we choose
λ = 1. This definition of physical distance can be generalized
straightforwardly for mixed states. To do so, one only needs to
specify the probability distribution as pi(ρ̂) = Tr(|ξi〉 〈ξi| ρ̂ )
for a mixed state described by density matrix ρ̂.

Two points warrant attention. (i) For a given quantum
system, the choice of the orthonormal basis B is not unique.
It depends on the physical issue that people want to address.
For example, for a spin-lattice system, if we are interested in
the magnetization along a given direction, then the spin-up
and -down states in that direction are a natural choice, and
the distance d for the metric can be chosen as the Hamming
distance. (ii) Our physical distance Dλ is not a distance on the
Hilbert space H. There exist the states |ψ1〉 �= |ψ2〉 for which
Dλ(ψ1, ψ2) = 0, for example |ψ1〉 = (|ξ1〉 + |ξ2〉)/

√
2 and

|ψ2〉 = (|ξ1〉 − |ξ2〉)/
√

2. Therefore, our distance is a function
of states and basis, i.e., quantum states and the way to extract
physical information from them. A more thorough discussion
will be given with examples in the following sections.

In Refs. [19,20], a Monge distance was defined between
quantum states with the Husimi functions of quantum states
as the distributions. It shares two features with our distance:
(i) mathematically, both are Wasserstein distances; (ii) both
reduce to the distance between classical states in the semiclas-
sical limit h̄ → 0. However, there is a crucial difference: the
use of the orthonormal basis B and a metric defined over B in
our definition. As a result, our physical distance is applicable
for all quantum systems, including spin systems. If one is
forced to view the Monge distance from this perspective, its
choice of the orthonormal basis B is the points in the classical
phase space, and the metric is the usual distance between
these points. This choice is certainly not natural, as the Monge
distance is defined for quantum states.

III. EXAMPLES OF PHYSICAL DISTANCE

In this section, we use a few examples to illustrate the
physical distance between quantum states. We will see that
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it can indeed capture quantitatively the physical difference
between quantum states and is consistent with our physical
intuition. There are various distances between quantum states
based on the inner product of quantum states; for the sake
of convenience, we compare our physical distance to one of
them, namely the Fubini-Study distance [4].

The first example is a one-dimensional spinless particle,
and we are interested in its position. In this case, the basis
B consists of an infinite number of vectors |x〉, which are
eigenfunctions of position operator x̂. We define the distance
d between two basis vectors |x〉 and |x′〉 as d (x, x′) = |x − x′|.
Consider two different quantum states, |x1〉 and |x2〉. Then
according to our definition, the physical distance between
them is D2(x1, x2) = |x1 − x2|. In contrast, the Fubini-Study
distance between |x1〉 and |x2〉 is 1 as long as x1 �= x2. Let us
consider a Gaussian wave packet,

〈x|ψx0,p0;σ 〉 = 1

(2πσ 2)
1
4

exp

[
− (x − x0)2

4σ 2
+ i

xp0

h̄

]
. (4)

One can find that the physical distance between two different
Gaussian states is [21]

D2(ψx1,p1;σ1 , ψx2,p2;σ2 ) =
√

(x1 − x2)2 + (σ1 − σ2)2. (5)

If the two Gaussian wave packets have the same width σ1 =
σ2, we simply have D2 = |x1 − x2|, which is just what our
physical intuition expects. In contrast, the Fubini-Study dis-
tance between these two Gaussian packets is close to 1 as
long as |x1 − x2| 
 σ1,2. It is interesting to note that D2 is
independent of the momentum. This is reasonable as we are
currently interested in the particle’s position. If one is inter-
ested in the particle’s momentum, one can similarly define
d (p, p′) = |p − p′| and then find the physical distance in mo-
mentum between two Gaussian packets as

D̃2(ψx1,p1;σ1 , ψx2,p2;σ2 ) =
√

(p1 − p2)2 + (σ̃1 − σ̃2)2, (6)

where σ̃1,2 are the widths of the wave packets in momentum
space.

The above simple example shows that the physical distance
depends on what physics we want to explore. Mathematically,
this is achieved by choosing an appropriate set of orthonormal
bases B. If we want to explore physics that is related explicitly
to both position and momentum, we can choose B to be a
set of Wannier bases. As shown in Fig. 3, the classical phase
space is divided into Planck cells, and each Planck cell is
assigned a Wanner function |w j〉 [22–25]. These orthonormal
Wanner functions |w jx jp〉 form the basis B. We define

d (w j1 ,w j2 ) =
√

(x j1 − x j2 )2 + (p j1 − p j2 )2, (7)

where x j’s and p j’s are the coordinates of the Planck cells
|w j〉’s. Let us consider two Gaussian packets of the same
width |ϕ1〉 and |ϕ2〉 in the quantum phase space; |ϕ1〉 is cen-
tered at |w1〉, and |ϕ2〉 is centered at |w2〉. When the widths
of two packets are much larger than a Planck cell and much
smaller than the distance d (w j1 ,w j2 ), we should have

D̃1(φ1, φ2) ≈
√

(x1 − x2)2 + (p1 − p2)2, (8)

where the approximation is due to the fact that the Gaussian
packets are discretized in the quantum phase space. This phys-

FIG. 3. Quantum phase space of a one-dimensional particle. p
and x are its momentum and position, respectively. Each square
represents a Planck cell. Three different Planck cells are marked by
1, 2, and 3.

ical distance is reduced to the distance in the classical phase
space when h̄ → 0. The Fubini-Study distance [4] does not
have this kind of semiclassical limit.

We turn to many-body quantum states, and we choose Fock
states as the basis B. A quantum state |n j〉 = |n1, n2, . . . , nk〉
means that there are n j particles in the single-particle mode
|e j〉. The vacuum state is denoted as |e0〉 = |0, 0, . . . , 0〉. We
define a metric for the single-particle modes and the vacuum
mode as d (ei, e j ) = di j = d ji and d (ei, e0) = di0 = d0i, re-
spectively. This allows us to define the distance between two
Fock states |n j〉 and |mj〉,

d (|n j〉 , |mj〉) = min
i j

∑
i, j

di j
i j, (9)

where ni = ∑
j 
i j , mj = ∑

i 
i j , and 
i j � 0. If the total
number of particles in these two Fock states are dif-
ferent, we let m0 = max(

∑
i ni,

∑
i mi ) − ∑

i mi or n0 =
max(

∑
i ni,

∑
i mi ) − ∑

i ni be the occupation number for the
vacuum state |e0〉. As a result, our definition is valid for states
of different particle numbers. Note that the distance di j can be
defined differently for different systems and different physics
in which one is interested. Our definition has at least two
advantages. First, it shares the same spirit with our physi-
cal distance, i.e., it is a Wasserstein-like metric for particle
number distributions. Second, there is no exponential scaling
between distance and particle number, which exists in the
Fubini-Study distance.

We use a special case to illustrate the second point. Con-
sider a system of N identical bosons and its two quantum
states. In one state |�1〉, all the bosons are in the mode
|e1〉; in the other state |�2〉, all the bosons are in the state
α |e1〉 + β |e2〉. It can be shown that D1(�1, �2) ∝ N . In con-
trast, the Fubini-Study distance is about 1 − |α|2N , which can
be regarded as 1 when N is large even when α ∼ 1, reflecting
the fact that the two many-body states |�1〉 and |�2〉 are
almost orthogonal to each other when N is large no matter
how close the single-particle states |e1〉 and α |e1〉 + β |e2〉 are
to each other. So, our physical distance is more consistent with
our intuition.
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IV. QUANTUM DYNAMICS AND PHYSICAL DISTANCE

The argument that linearity prevents true chaos in quan-
tum mechanics [2,3] is as follows. Suppose that we have
two quantum states |ψ1〉 and |ψ2〉. As quantum dynamics
is unitary, the inner product 〈ψ1|ψ2〉 does not change with
time. As a result, if these two states |ψ1〉 and |ψ2〉 are very
close to each other, that is, 〈ψ1|ψ2〉 ∼ 1, they will always be
close to each other. This implies no true chaos. However, as
shown in Fig. 1, chaotic motion is clearly possible in quantum
dynamics. Other examples of chaotic quantum motion can be
found in Ref. [26]. This contradiction is due to the use of
the inner product to measure the difference between quantum
states. As already discussed, the inner product is incapable of
telling us how close or far two quantum states are when they
are orthogonal to each other.

Let us consider the case in Fig. 3. We use |w1〉 and |w2〉 to
denote the two quantum states represented by the two Planck
cells marked with 1 and 2. We let |w1〉 and |w2〉 evolve,
respectively, according to a given Schrödinger equation. As
a result, at time t , |w1〉 becomes |φ1(t )〉, and |w2〉 evolves
into |φ2(t )〉. The Fubini-Study distance between these two
states does not change with time as 〈φ1|φ2〉 = 〈w1|w2〉 = 0.
However, it is a very different story for physical distance.
According to our discussion, the physical distance between
|w1〉 and |w2〉 is small. When the dynamical evolution starts,
the physical distance can grow. The unitarity of quantum dy-
namics does not guarantee that the physical distance between
|φ1(t )〉 and |φ2(t )〉 will be small. The situation shown in Fig. 3
can happen: the physical distance grows with time in quantum
dynamics while keeping 〈φ1|φ2〉 at zero. As we will show with
our numerical calculation in the next section, this is indeed
what happens in quantum chaotic systems.

So, there is true chaos in quantum dynamics, and it can be
understood in terms of physical distance. In the following, us-
ing the concept of physical distance, we define two parameters
to characterize the diverging and irregular quantum dynamics.

A. Quantum Lyapunov exponent

The Lyapunov exponent is one of the most important con-
cepts in classical dynamics, and it characterizes the rate of
separation of infinitesimally close initial trajectories. Quanti-
tatively, in a chaotic classical dynamics, the distance (usually
L2 distance) between two points that are initially very close
grows with time t as

‖δZ(t )‖ ≈ eγ t‖δZ(t = 0)‖, (10)

where Z = (q, p) is the state in phase space. The parameter γ

is the Lyapunov exponent. With the physical distance between
two quantum states, the (maximum) Lyapunov exponent in
quantum mechanics can be similarly defined as [27,28]

γQ = lim
t→∞ lim

ψ ′→ψ

1

t
ln

D(ψ (t ), ψ ′(t ))
D(ψ (0), ψ ′(0))

. (11)

This is very similar to the definition of the Lyapunov com-
ponent in classical mechanics, which can be obtained by
replacing the physical distance between states D(·, ·) with the
distance in classical phase space. The symbol ψ ′ → ψ means
ψ,ψ ′ are close but different in the sense of physical distance.

FIG. 4. The time evolution of three types of distances for the
kicked rotor at different kick strengths K . Blue lines are the distance
between the points on classical trajectories, red lines are the physical
distance between wave packets in the quantum phase space, and
black lines are the distance between the expectation values of oper-
ators q̂, p̂. (a) K = 0.3, m = 30; (b) K = 0.9, m = 30; (c) K = 1.5,
m = 30. Part (d) has the same parameters K = 1.5, m = 30 but with
a longer time evolution.

For quantum systems in which quantum phase spaces sim-
ilar to Fig. 3 can be constructed, we can always use physical
distance similar to the one in Eq. (6). In the semiclassical
limit, h̄ → 0, the areas or volumes of the Planck cells ap-
proach zero and the quantum dynamics becomes classical. In
this limit, we should have

lim
h̄→0

γQ = γC . (12)

Note that this relation holds only when the Lyapunov time
(the inverse of the Lyapunov exponent) is smaller than the
Ehrenfest time [26,29]. So the limit t → ∞ is not a strict
mathematical term, and it should be understood as a suffi-
ciently long time before the wave packets become too widely
spread.

B. Quantum chaos measure

Intuitively, chaos means disorder and irregularity in dy-
namics. In classical dynamics, this is indicated by the
scattered points in Poincaré sections [see, e.g., Fig. 5(a)],
which are usually referred to as chaotic sea. How chaotic a
classical dynamics is is reflected by how much the chaotic seas
occupy the phase space. In the chaotic sea, there are regular
motions, which are usually referred to as an integrable island.
When there is only a “chaotic sea” in the Poincaré sections,
the system becomes fully chaotic. In this case, we have er-
godicity and/or mixing, and the long-time average becomes
identical to the microcanonical ensemble average [30].

With physical distance, we can also compare the long-time
average and the microcanonical ensemble average for quan-
tum dynamics. In standard textbooks [31], the microcanonical
ensemble is regarded as a maximally mixed state, and it can
be described by the density matrix Î/dim. Î is the identity
matrix and “dim” is the dimension of the Hilbert space. This
is usually a postulate in standard textbooks [31], but it has
been fully justified by many studies [22–24,30,32]. We use the
physical distance between the long-time average of the density
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FIG. 5. (a),(c) Classical Poincaré sections, and (b),(d) quantum
chaos measures in the quantum phase space. The chaos measure for
a Planck cell is computed by the evolution of a quantum state that
is initially localized at the Planck cell. The figures are plotted by
scanning the entire quantum phase space. The kicking strength in
(a),(b) is K = 0.9, while it is K = 1.5 in (c),(d). Note that (b) is
colored with logarithmic scaling, and the original values range is
[1.07, 82.3]. In (d), the values of chaos are in the range [0.03, 1.41].

matrix and the density matrix Î/dim to quantitatively measure
the severity of quantum chaos. Mathematically, this difference
is given by

ϒ = D

(
1

dim
, lim

T →∞
1

T

∫ T

0
ρ̂(t )dt

)
. (13)

We call this the quantum chaos measure. The measure ϒ de-
pends on the initial quantum states. For some initial quantum
states, ϒ is small and it means that the long-time-average
density matrix is sufficiently close to the maximally mixed
state. These quantum states belong to the chaotic sea. For
some initial states ϒ is large, and these states belong to in-
tegrable islands. In the next section, our numerical results will
show that we can use the chaos measure to construct quantum
Poincaré sections, which resemble classical Poincaré sections.

One can use other tools to quantify the degree of disor-
der in quantum dynamics, for example quantum entropy of
the form −∑

i pi ln pi [33,34]. The core advantage of our
chaos measure is its dependence on the metric structure of
basis B, i.e., the information of base space. For example (see
Appendix B for details), consider the following two probabil-
ity distributions on set {0, 1, 2, . . . , 9}:

pA(x) =
{

1/5, x < 5,

0, x � 5 (14)

and

pB(x) =
{

1/5, x is even,
0, otherwise. (15)

The entropies of pA and pB are the same, but pB appears much
closer to the uniform distribution. This can be reflected by
our chaos measure as we have ϒA = 5/2, ϒB = 1/2 with the
metric d (x, y) = |x − y| on the base space. This difference
means our measure ϒ can reveal finer property better than any
other concepts that ignore the information of the base space.
In Ref. [35], the length of a Planck cell was introduced to
measure disorder in quantum dynamics; however, this concept
is limited and cannot be applied to spin systems.

In 1984, Peres suggested a very different approach to dis-
tinguish quantum chaotic motion and regular motion. In this
approach, the perturbed one is not the initial condition but the
Hamiltonian. The key quantity computed in this approach is
known as Loschmidt echo, and it is related to the classical
Lyapunov exponent [36]. From our perspective, it is evident
that an initial quantum state in the chaotic region will respond
to a perturbed Hamiltonian different from one in the regular
region. However, for an initial state near the regular-chaos
border, the Loschmidt echo may not accurately capture its dy-
namical behavior as the perturbation Hamiltonian may switch
between the regular and chaotic regions.

V. NUMERICAL RESULTS

In this section, we will numerically study three different
systems to illustrate the concept of physical distance. These
three systems are a quantum kicked rotor, a three-site Bose-
Hubbard model, and an XXZ spin chain. The quantum kicked
rotor has a natural classical counterpart. For the three-site
Bose-Hubbard model, its classical counterpart is the mean-
field theory, and its effective Planck constant is the inverse of
the particle number 1/N . In contrast, the XXZ spin chain has
no obvious classical counterpart.

A. Kicked rotor

A kicked rotor is one of the systems that has been well stud-
ied both as a quantum and a classical system. The Hamiltonian
of a kicked rotor on a ring has the following dimensionless
form [33,35]:

H = 1

2
p2 + K cos q

+∞∑
n=−∞

δ(t − n). (16)

Its classical dynamics is equivalent to the following map:

pn+1 = pn + K sin qn mod 2π,

qn+1 = qn + pn+1 mod 2π,
(17)

where we have used the fact that the momentum p and p +
2nπ are equivalent. (qn, pn) is the position and momentum of
the kicked rotor before the nth kick. The kicking strength K is
the only control parameter, and the critical value for the onset
of the global chaos is 0.971 635 � Kc < 63/64 [37].

The quantum dynamics has one more parameter, the effec-
tive Planck constant h̄eff [33,35]. For simplicity, we choose
h̄eff = 2π/m2, with m being a positive integer. In this case,
we can divide the 2π × 2π classical phase space into m × m
Planck cells (similar to Fig. 3) and assign a Wannier function
|X, P〉 to each Planck cell [33,35]. X, P are the coordinates
of a Planck cell. These Wannier functions {|X, P〉} form a
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complete set of orthonormal bases. We choose them as our
choice of B and define the distance between two basis vec-
tors as d (X, P; X ′, P′) =

√
|X ′ − X |22π + |P′ − P|22π , in which

|x′ − x|2π = min{|x′ − x|, 2π − |x′ − x|} means the length of
an interval on a unit circle.

In our numerical calculation, we choose the initial quan-
tum states localized at (4.7,3) and (4.7 + 2π/m, 3 + 2π/m).
The dynamics near these two points becomes chaotic as K
increases, as shown in Figs. 5(a) and 5(c). The initial quantum
states are the maximally localized Gaussian wave packets of
the following form:

〈x |ψ (x0, p0)〉 = 1

(2π h̄eff )1/4
exp

[
− (x − x0)2

2h̄eff
+ ixp0

h̄eff

]
.

(18)

As the two states evolve with time, we compute numeri-
cally the physical distance between them and see how they
change with time. For comparison, we have also computed
two other distances. One is the distance between the ex-
pectation values of q̂, p̂ for these two different quantum
states, namely d (〈q̂〉ψ, 〈p̂〉ψ ; 〈q̂〉ψ ′ , 〈q̂〉ψ ′ ) with 〈·〉ψ = 〈ψ (t )| ·
|ψ (t )〉. For convenience, we call it the expectation distance.
The other is the distance between two corresponding classical
trajectories starting at (4.7,3) and (4.7 + 2π/m, 3 + 2π/m).
The results are plotted in Fig. 4.

In Fig. 4, we can find that the physical distance agrees well
with the classical distance for the first several kicks. In con-
trast, during these kicks the expectation distance can deviate
largely from the classical one. That is because the expectation
distance measures the distance between the centers of the
wave packets, which is not a good description of the phys-
ical difference between quantum states. In the long run, the
quantum distance differs from the classical distance because
of the distortion of the wave packets after the Ehrenfest time.

The numerical calculations that produce Fig. 4 are ex-
pected to give us a growth with the Lyapunov exponent when
the Planck constant h̄eff is small enough. Unfortunately, due
to limited computation power, our Planck constant is not
small enough. For the case in Fig. 4, h̄eff = 2π/m2 ∼ 0.01 for
m = 30, and it is too large to show this exponential growth
numerically. Since the dimension of Hilbert space is m2 while
the computation complexity of physical distance is polyno-
mial to the dimension (see Sec. VI), the complexity of the
physical distance of L pairs of quantum states is of O(m5L)
approximately with the algorithm in Ref. [38]. It exceeds
our computational ability to simulate quantum dynamics
with small enough h̄eff and show the Lyapunov exponent
numerically.

We have also computed quantum chaos measure for the
kicked rotor. We use the maximally localized Gaussian
wave packets as the initial states, scan the entire quantum
phase space, and compute the measure for each Planck cell.
The results are plotted in Figs. 5(b) and 5(d) and compared
to the classical Poincaré sections in Figs. 5(a) and 5(c). The
resemblance between them is unmistakeable. Note that the
chaos measure is the distance between the long-time averaged
density matrix and the maximally mixed state. In Fig. 5(b), the
values of chaos measure are large in the regions corresponding

to the classical integrable islands. This means that the wave
packets starting at these states cannot spread out as much as
the chaotic systems do (see, e.g., the lower panels in Fig. 1).

When the kicking strength K is large, the values of the
measure become much smaller, indicating that the quantum
dynamics become more chaotic and the wave packets begin to
spread out to the large portions of the phase space (see, e.g.,
the lower panels in Fig. 1). Some may argue that Figs. 5(a) and
5(b) do not agree well; this is due to the small area of chaotic
sea. However, if we can further reduce the Planck constant for
a finer resolution of phase space, the agreement will become
better [35].

B. Three-site Bose-Hubbard model

We consider a different system, namely a three-site Bose-
Hubbard model described by the following Hamiltonian [26]:

Ĥ = −c0

2

∑
1 � i, j � 3 i �= j

â†
i â j + c

2N

3∑
j=1

â†
j â

†
j â j â j,

(19)

where â†
j and â j are the bosonic creation and annihilation

operators for the mode j. c is the scaled interaction strength,
and N is the number of bosons in the system. This system has
a mean-field limit at N → ∞, whose Hamiltonian is

Hmf = −c0

2

∑
1 � i, j � 3 i �= j

a∗
i a j + c

2

3∑
j=1

|a j |4, (20)

where |a1|2 + |a2|2 + |a3|2 = 1. In this Bose-Hubbard model,
the quantumness is controlled by the particle number N , and
the mean-field Hamiltonian is its “classical counterpart.” As
we will show, the physical distance is still applicable in this
type of system.

Since in the mean-field model each mode aj has a def-
inite amplitude and phase, we choose a basis B for the
quantum model where each basis vector contains informa-
tion for both amplitude (or particle number) and phase. For
convenience, we take the total particle number N = L2 − 1,
where L is an integer. The basis vector in B is denoted
as |�1, ϑ1; �2, ϑ2〉; its expectations for particle numbers are
�1,2L + (L − 1)/2 and for phases 2πϑ1,2/L. The details of
this orthonormal basis {|�1, ϑ1; �2, ϑ2〉} with 0 � �1,2, ϑ1,2 �
L − 1 can be found in Appendix A. This effectively cre-
ates a four-dimensional quantum phase space with L × L ×
L × L Planck cells. Therefore, a natural choice for the basis
metric is

d ({�, ϑ}, {�′, ϑ ′}) = 1

L

√√√√ 2∑
i=1

(

�2

i + 
ϑ2
i

)
, (21)

where 
�i = |�i − �′
i| and 
ϑi = min{|ϑi − ϑ ′

i |, L − |ϑi −
ϑ ′

i |} (ϑi is periodic). We can compute the physical distance
between two quantum states or two classical points according
to this metric, just as we did for the kicked rotor.

The classical motion of the system is nonintegrable
for generic c. This is evident in the Poincaré section for
c/c0 = 2, E = 0.8c0, n2 = 0.2475, and ṅ2 > 0 shown in
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FIG. 6. Physical distances between two pairs of perturbed
initial conditions: (a) regular case, (n1, θ1) = (0.220, 0.8π ) and
(0.221, 0.8π ); (b) chaotic case, (n1, θ1) = (0.420, 0.8π ) and
(0.421, 0.8π ). Both are chosen from the Poincaré section in Fig. 7(a).
The regular classical distance is well-recovered by quantum dis-
tances for time up to c0t = 8, and the sharp peaks in the classical
distance curve are also prominent in quantum curves. As the quantum
phase space resolution L is increased, the peaks become closer and
closer to the classical one. In the chaotic case, although the quantum
distance starts deviating from the classical distance at an earlier stage
due to a fast Ehrenfest breakdown, its smoothness stands in sharp
contrast to the rich structure in regular classical distance curves as
well as regular quantum distance curves, demonstrating the stark
difference between regular motion and chaotic motion.

Fig. 7(a), where we see both regular and chaotic motions.
Note that n1,2 = |a1,2|2 and θ1,2 = arga1,2 − arga3. We choose
the quantum initial state to be a coherent state |�〉 =

n 1n 1

0.6

0.4

0.2

0 0.5 1.0 0 0.5 1.0

(a) (b) 0.3

0.2

0.1

0

0.6

0.4

0.2

0 0

FIG. 7. (a) Classical Poincaré section of the mean-field model
[see Eq. (20)] at c/c0 = 2, E = 0.8c0, n2 = 0.2475, and ṅ2 > 0.
(b) The corresponding quantum chaos measure with L = 10 (see
the main text for computation details). Note that the side length of
the little squares in (b) is equal to 1/(3L), the sampling step length,
instead of the inverse resolution 1/L. It is clear that the yellow and
green areas, where the quantum chaos measure is large, coincide with
the classical regular islands, while the blue areas, where the quantum
chaos measure is small, correspond to the chaotic sea.

1√
N!

(
∑3

i=1 aiâi
†)

N |0〉; its shape in our quantum phase space
will be close to a Gaussian packet centered at the classical
point (a1, a2, a3)T with a width of order

√
1/N ∼ 1/L [26].

We first choose a pair of initial conditions, (n1, θ1) =
(0.220, 0.8π ) and (n1, θ1) = (0.221, 0.8π ), which are located
in the integrable island of the Poincaré section in Fig. 7(a).
The results are presented in Fig. 6(a). It can be seen that,
when the dynamics is regular, the quantum physical distance
coincides with the classical distance very well in a relatively
long period of time. When the quantum resolution L is in-
creased from 6 to 9, the quantum physical distances have an
obvious inclination to converge to the classical distance. This
is quite surprising because the difference between the two
initial conditions is only of order 10−3, while for the highest
quantum resolution L = 9 in our simulation the size of the
Planck cell is of order 10−1. So, we expect that our physical
distance will match the classical distance well even when the
size of the Planck cell is significantly smaller than the classical
distance between two initial conditions.

We choose a different pair of initial conditions, (n1, θ1) =
(0.420, 0.8π ) and (n1, θ1) = (0.421, 0.8π ), which are located
in the chaotic sea of Fig. 7(a). The numerical results are
shown in Fig. 6(b). In this chaotic case, the total time that the
quantum physical distances and the classical distance coincide
is much shorter. This can be explained with the Ehrenfest
time, the timescale when the quantum-classical dynamics
break down. For the chaotic dynamics, the Ehrenfest time is
short and proportional to ln N [26], while for the integrable
dynamics this timescale is much longer and proportional to√

N [29]. So, for this chaotic dynamics, to see the numerically
exponential divergence of the quantum physical distance, we
have to have N (or L) exponentially large. Unfortunately,
for both integrable and chaotic cases, large N is beyond our
numerical capacity.

We also computed the quantum chaos measure for
this Bose-Hubbard system, corresponding to the classical
Poincaré section in Fig. 7(a) with c/c0 = 2. We divide
the phase space with the quantum resolution L = 10,
that is, the total particle number being N = 99. Our ini-
tial quantum states are coherent states |�c(t = 0)〉, which
are localized wave packets occupying O(1) Planck cells.
We calculate their long-time average density matrix ρ∞ =
limT →∞ 1

T

∫ T
0 dt |�c(t )〉〈�c(t )|, and we project them onto the

quantum phase space and obtain the distribution Pc(�i, ϑi ) =
Tr{ρ∞|�i, ϑi〉〈�i, ϑi|}. The classical (or mean-field) dynamics
is limited to a constant energy surface in the phase space. In
contrast, the quantum dynamics is limited to an energy shell
with a certain thickness. To effectively reduce the compu-
tation burden, we only pick out Planck cells located within
the Gaussian-broadening energy shell. To be specific, we
Gaussian-fit the smoothened envelope of the energy spectra
of these selected coherent states, with the goodness of fit
R2 = 0.994, and we select out the phase cells with energy
expectation values within ±3σ of the Gaussian. This method
is able to capture 70% ± 7% of the original coherent packets.
We then set the energy shell with this Gaussian envelope to
be the ergodic reference ρerg of the system following [39],
in place of the classical microcanonical ensemble, and we
project it onto the space Perg(�i, ϑi ) = Tr{ρerg|�i, ϑi〉〈�i, ϑi|}.
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FIG. 8. Eigenenergy spacing statistics for the XXZ spin chain
that has 15 spins in the sub-Hilbert space with 5 spins up. The
defection is on the site i∗ = 2 and the boundary condition is open
with J1 = 1.0, J2 = 0.5. The red line is for ε = 0.5 and is close to
the Wigner-Dyson distribution (dashed line), while the blue line is
for ε = 0.01 and is close to the Poisson distribution (dotted line).

Then we calculate the physical distance between Perg(�i, ϑi )
and each Pc(�i, ϑi ) and obtain the chaos measure. The results
are plotted in Fig. 7(b). We see that the classical Poincaré
section in Fig. 7(a) is very well recovered. The regular islands
are distinguished by the coherent initial states that have a
large physical distance from the ergodic envelope, while the
chaotic sea is filled with initial states that are very close in
physical distance to the ergodic envelope. Quite surprisingly,
even the two small regular islands with a size of only one
single quantum phase cell are clearly seen. Therefore, we
expect that our chaos measure proposed here will be able to
distinguish regular island structures with size no smaller than
the order of one single Planck cell.

C. Spin chain

We now study a system that does not have a clear classi-
cal counterpart. It is the spin-1/2 XXZ model with disorder
described by the following Hamiltonian [40]:

Ĥ =
N−1∑
i=0

hiŝ
z
i +

N−2∑
i=0

{
J1

(
ŝx

i ŝx
i+1 + Ŝy

i ŝy
i+1

) + J2ŝz
i ŝ

z
i+1

}
, (22)

where ŝx,y,z
i are spin operators at the ith site, and hi = εδi,i∗ is

the magnetic field at a given random site denoted by i∗. In our
model, Sz = ∑N

i=1 sz
i is conserved and the Hilbert space can

be divided into subspaces labeled by Sz. The spin system has
different eigenenergy spacing statistics with different values
of ε [40]. Two examples are shown in Fig. 8, which show that
the case ε = 0.01 is largely integrable while the case ε = 0.5
is chaotic.

To compute the quantum chaos measure, we choose the set
of common eigenstates of all ŝz

i as the basis B and denote them
as 0,1 valued vectors {|s1, s2, . . . , sN 〉}si∈{0,1}}. The distance
between them is defined as the L1 measure between the arrays
of positions of 1’s. For example, the array for the positions
of 1’s in the state |1, 1, 0, 0, 0〉 is (0,1), and the array for

FIG. 9. Quantum chaos measures for the 10 initially localized
states in the XXZ spin-chain model. The green line is for ε = 0.01
and the red line is for ε = 0.5. The left side of the red line is large
due to the defection on the second site i∗ = 2. The overall decrease
of the chaos measure from ε = 0.01 to 0.5 shows that the spin chain
becomes more chaotic as the defection increases, which agrees with
the results of energy spacing statistics.

|0, 0, 0, 1, 1〉 is (3,4). So, the distance between them is

d (|1, 1, 0, 0, 0〉 , |0, 0, 0, 1, 1〉) = |3 − 0| + |4 − 1| = 6.

(23)

Note that this metric is different from the Hamming distance,
which is 4 between the states |1, 1, 0, 0, 0〉 and |0, 0, 0, 1, 1〉.
In fact, this metric is the same as our distance defined
for the many-body states in Sec. III if we treat the states
|s1, . . . , sN 〉 as Fock states for fermions with s j particle in
the single-particle mode | j〉 and define the distance between
corresponding single-particle states | j〉’s as d (|i〉 , | j〉) = |i −
j|; i, j = 1, . . . , N . For example, the most efficient way to
transport (1,1,0,0,0) to (0,0,0,1,1) is to move each 1 in the
first array to the position of the corresponding 1’s one by one
in the second array.

In our numerical computation, we choose N = 15 and
focus on the subspace with 5 spins up. The initial localized
states are chosen to be states that have consecutive 1’s in
their boolean-valued arrays, such as (1, 1, 1, 1, 1, 0, . . . , 0)
and (0, 1, 1, 1, 1, 1, . . . ). There are in total 10 of them, which
are numbered according to the position of the first 1. The
computed quantum chaos measure is shown in Fig. 9. It is
clear from the figure that the chaos measure is much smaller
for the chaotic case ε = 0.5 than for the nonchaotic case
ε = 0.01. This is in agreement with the eigenenergy spacing
statistics shown in Fig. 8.

VI. DISCUSSION AND CONCLUSION

In some cases, the Wasserstein distance is not robust with
respect to the distance matrix di j defined for a pair of ba-
sis vector. For example, consider two distribution: δ(x) and
(1 − η)δ(x) + ηδ(x − d ) on a one-dimensional Euclidean
space. The Wasserstein distance between them is merely ηd .
That means no matter how small η is, one can find a suffi-
ciently large d so that the Wasserstein distance diverges. That
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is what we meant when we said that the distance is not robust
with respect to di j . Fortunately, the distance matrix di j in our
numerical examples has upper bounds so that we do not need
to worry about this.

Another challenge for our proposed physical distance is
the complexity of computing the Wasserstein distance. In our
numerical implementation, we use a python module called
PYEMD to compute the Wasserstein distance [41,42]. Though
the convex optimization problem for computing the distance
is easy (it is a linear programming problem in discretized
form [43]), we are facing an exponentially high-dimensional
Hilbert space in quantum mechanics, and our code cannot
handle larger systems. But the core of this challenge is the
dimension of the Hilbert space, which should also be a chal-
lenge to any other definitions with a similar concept. In this
sense, our definition has an equivalent complexity to others.

In conclusion, we have shown that there is genuine quan-
tum chaos with the physical distance proposed for two
quantum states. This quantum distance is based on the Wasser-
stein distance between two probability distributions. We call
it “physical” because it faithfully measures the difference of
physical properties. This physical distance can be very small
for two orthogonal initial quantum states, and then diverge ex-
ponentially during the ensuing quantum chaotic motion. With
physical distance, we have defined two parameters to charac-
terize the quantum dynamics: quantum Lyapunov exponents
for the short-time dynamics, and quantum chaos measure for
the long-time dynamics. The latter allows us to construct
the quantum analog of the classical Poincaré section, where
regions for regular quantum motions and chaotic quantum
motions are mapped out.
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APPENDIX A: QUANTUM PHASE SPACE FOR THE
THREE-SITE BOSE-HUBBARD MODEL

1. Construction of the quantum phase space

The total particle number N is conserved in the three-site
Bose-Hubbard Hamiltonian [Eq. (19)]. As a result, in the Fock
states |N1, N2, N3〉, there are only two free parameters N1,2 and
N3 = N − N1 − N2. We consider a Hilbert space spanned by
Fock states |N1, N2〉 with 0 � N1,2 � N , which contains the
Hilbert space of the three-site Bose-Hubbard system. We fur-
ther take N = L2 − 1. For this L4-dimensional Hilbert space,
we define a set of orthonormal bases

|�1, ϑ1; �2, ϑ2〉

= 1

L

L−1∑
N1=0

L−1∑
N2=0

ei 2π
L (N1ϑ1+N2ϑ2 )|N1 + �1L, N2 + �2L〉,

(A1)

where the four indices �1,2, ϑ1,2 = 0, 1, . . . , L − 1. As a re-
sult, the L4-dimensional Hilbert space is arranged into a
four-dimensional phase space that is divided into L × L ×
L × L Planck cells. And each Planck cell is represented by
|�1, ϑ1; �2, ϑ2〉. For this four-dimensional phase space, there
are two pairs of conjugate observables: N̂1,2, the particle num-
ber operators, and θ̂1,2, the relative phase operators. They can
be defined as

N̂i =
N∑

N1=0

N∑
N2=0

Ni|N1, N2〉〈N1, N2|, (A2)

θ̂i =
N∑

M1=0

N∑
M2=0

θMi |θM1 , θM2〉〈θM1 , θM2 |, (A3)

where |θM1 , θM2〉 is the Fourier transformation of the
Fock basis,

|θM1 , θM2〉 = 1

N + 1

N∑
N1=0

N∑
N2=0

ei(N1θM1 +N2θM2 )|N1, N2〉, (A4)

with θMi = θ
(0)
i + 2πMi/(N + 1) and Mi = 0, 1, . . . , N . In

light of this, we can recast Eq. (A1) as

|�1, ϑ1; �2, ϑ2〉

= 1

L3

N∑
M1=0

N∑
M2=0

1 − e−iL(θM1 − 2πϑ1
L )

1 − e−i(θM1 − 2πϑ1
L )

1 − e−iL(θM2 − 2πϑ2
L )

1 − e−i(θM2 − 2πϑ2
L )

×e−iL(�1θM1 +�2θM2 )|θMi , θM2〉, (A5)

where each fraction takes its limit value if its denominator
is 0.

We will show in the following that each |�1, ϑ1; �2, ϑ2〉
state represents a Planck cell in the phase space in the sense
that their positions are fixed by the four parameters �i, ϑi, and
that their shapes are localized.

2. The positions of the Planck cells

We will analytically verify that for a given Planck cell
|�1, ϑ1; �2, ϑ2〉, �i is proportional to the expectation value of
the particle number at this cell, and ϑi is proportional to the
expectation value of the phase, up to some correction terms.
The expectations are

〈N̂i〉�i,ϑi = �iL + L − 1

2
, (A6)

〈θ̂i〉�i,ϑi = 2π

L
ϑi + 1

L3

N∑
Mi=0

∣∣∣∣∣ sin
Lθ̃Mi

2

sin
θ̃Mi
2

∣∣∣∣∣
2

θ̃Mi , (A7)

where 〈·〉�i,ϑi denotes the expectation value of the state
|�1, ϑ1; �2, ϑ2〉, and θ̃Mi = θMi − 2π

L ϑi. The normalization of
Eq. (A5) has been used in deriving Eq. (A7).

We can further show that the correction terms can be re-
garded as constants independent of ϑi. In Eq. (A6), this is
obvious. We only need to examine Eq. (A7). We notice that in
Eq. (A7), with fixed θ

(0)
i , altering ϑi → ϑi + 1 is equivalent to

adding an additional term to θMi → θMi − 2π/L, and keeping
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FIG. 10. The values of the correction term in Eq. (A7), Cθ =
1

L3

∑N
Mi=0 | sin

Lθ̃Mi
2

sin
θ̃Mi

2

|
2

θ̃Mi . (a) θ
(0)
i is fixed at −π/L. (b) θ

(0)
i is changed

to keep all the θ̃Mi in the region of [−π, π ). Two periods of ϑi are
plotted in these two figures.

ϑi unchanged,

1

L3

N∑
Mi=0

∣∣∣∣∣ sin
Lθ̃Mi

2

sin
θ̃Mi
2

∣∣∣∣∣
2

θ̃Mi

→ 1

L3

N∑
Mi=0

∣∣∣∣∣ sin
L(θ̃Mi −2π/L)

2

sin
θ̃Mi −2π/L

2

∣∣∣∣∣
2

(θ̃Mi − 2π/L)

= 1

L3

N∑
Mi=0

∣∣∣∣∣ sin
Lθ̃Mi−L

2

sin
θ̃Mi−L

2

∣∣∣∣∣
2

θ̃Mi−L

= 1

L3

(
N−L∑
Mi=0

+
−1∑

Mi=−L

)∣∣∣∣∣ sin
Lθ̃Mi

2

sin
θ̃Mi
2

∣∣∣∣∣
2

θ̃Mi

= 1

L3

N−L∑
Mi=0

∣∣∣∣∣ sin
Lθ̃Mi

2

sin
θ̃Mi
2

∣∣∣∣∣
2

θ̃Mi

+ 1

L3

N∑
Mi=N−L+1

∣∣∣∣∣ sin
L(θ̃Mi −2π )

2

sin
θ̃Mi −2π

2

∣∣∣∣∣
2

(θ̃Mi − 2π )

= 1

L3

N∑
Mi=0

∣∣∣∣∣ sin
Lθ̃Mi

2

sin
θ̃Mi
2

∣∣∣∣∣
2

θ̃Mi −
N∑

Mi=N−L+1

2π

L3

∣∣∣∣∣ sin
Lθ̃Mi

2

sin
θ̃Mi
2

∣∣∣∣∣
2

. (A8)

We can see that there are special points θ̃Mi ≡ 0(mod2π )

where | sin
Lθ̃Mi

2

sin
θ̃Mi

2

|
2

is of order O(L2). Otherwise, the alteration

of the correction term induced by ϑi → ϑi + 1 is of order
O(LL−3) = O(L−2), which is ignorable compared to the shift
in the first term of Eq. (A7), 2π/L. Since ϑi has a period
of L, and sin θ̃Mi/2 = sin(θMi − 2πϑi/L)/2 approaches 0 only
once over the entire period, we can always avoid those points
in an entire period by carefully choosing θ

(0)
i . Therefore, we

can say that the correction term in Eq. (A7) is approximately
a constant. This point is illustrated in Fig. 10(a). We can
understand this question from another point of view. Since
the expectation values of wells 1 and 2 are independent of
each other, we may ignore the degrees of freedom related to
well 2 and consider a reduced double-well case. Note that θ1

is actually a periodic quantity, and we should actually plot
the amplitude |〈θM1 |�1, ϑ1〉|2 on a ring. Therefore, a different

FIG. 11. |〈θM1 |�1, ϑ1〉|2 vs θ̃M1 , with fixed ϑ1 = 0 and a different
choice of θ

(0)
1 . (a) θ

(0)
1 = −π/L. (b) θ

(0)
1 = −π .

choice of θ
(0)
1 turns out to represent cutting the ring at different

positions, as illustrated by Fig. 11. Obviously, Fig. 11(a) will
have a slightly larger expectation value of θ̂1 than Fig. 11(b),
but as long as the cut is not in the peak, whose width scales as
O(L−1), the deviation will be small. This is the origin of the
correction term in Eq. (A7). If we allow θ

(0)
1 to change with

the shifting of ϑ1 and keep all the θ̃M1 = θ
(0)
1 + 2πM1/L2 −

2πϑ1/L (M1 = 0, 1, . . . , L2 − 1) in the region of [−π, π ), as
in Fig. 11(b), then the peak in |〈θM1 |�1, ϑ1〉|2 will always be at
the middle point of the region, hence the correction term will
be exactly 0 for arbitrary ϑ1, as shown in Fig. 10(b).

3. Localization of the Planck cells

Finally, we analyze the fluctuations of these expectation
values, i.e., the localization of the shapes of these Planck cells.
The fluctuations are


ni =
√

〈N̂i
2〉�i,ϑi − 〈N̂i〉2

�i,ϑi

N

= 1√
12N

∼ 1√
12L

, (A9)


θi =
√

〈θ̂i
2〉�i,ϑi − 〈θ̂i〉2

�i,ϑi

=

√√√√√ 1

L3

N∑
Mi=0

∣∣∣∣∣ sin
Lθ̃Mi

2

sin
θ̃Mi
2

∣∣∣∣∣
2

θ̃2
Mi

− C2
θ . (A10)

As discussed above, we can choose Cθ = 0 so that Eq. (A10)
can be further estimated as


θi ∼

√√√√ 1

L3

∫ π

−π

dx L2

∣∣∣∣ sin Lx
2

sin x
2

∣∣∣∣2

x2

=
√

1

L3

∫ π

−π

dx L2 sin2 Lx

2

x2

sin2 x
2

∼
√

A

L

∫ π

−π

dx sin2 Lx

2

∼
√

πA

L
, (A11)

where A is a constant of order O(1) introduced due to the fact
that x/ sin(x/2) ∼ O(1) over the entire region of [−π, π ).
Therefore, for both the particle number and the phase, the
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FIG. 12. The most efficient way to achieve the transport between two distributions.

fluctuations of the expectation values converge to 0 as L goes
to infinity. This establishes the localized “cell” picture of each
Planck cell.

APPENDIX B: EXAMPLES OF COMPUTING THE
WASSERSTEIN DISTANCE

We use two examples to compute the Wasserstein distance
between distributions. We consider two distributions:

pA(x) =
{

1/5, x < 5,

0, x � 5 (B1)

and

pB(x) =
{

1/5, x is even,
0, otherwise (B2)

on the set B = {0, 1, . . . , 9}. We want to compute the Wasser-
stein distance between them and the uniform distribution.
We choose the metric on B as d (x, y) = |x − y|, x, y ∈ B.
The Wasserstein distance can be computed as follows. The

transport matrix between pA and uniform distribution pE (x) =
1/10 is Pi j ∈ [0, 1], which obeys∑

j∈B
Pi j = pA(i),

∑
i∈B

Pi j = pE ( j). (B3)

The Wasserstein distance for λ = 1 is the minimum value of∑
i, j∈B

Pi jd (i, j). (B4)

This shows that the Wasserstein distance is the most efficient
way to transform one distribution to another. As both distribu-
tions pA and pB are simple, the most efficient ways are shown
in Fig. 12. For the distribution pA, the nonzero optimal P∗

i j are

P∗
i,i = P∗

i,i+5 = 1/10, i = 0, 1, . . . , 4, (B5)

which means the Wasserstein distance D1(pA, pE ) = 5 × |5 −
0| × 1/10 = 2.5. Similarly, we have D1(pB, pE ) = 5 × |1 −
0| × 1/10 = 0.5.
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