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Abstract This is a tutorial for the many-worlds theory by Everett, which includes some of my personal
views. It has two main parts. The first main part shows the emergence of many worlds in a universe
consisting of only a Mach–Zehnder interferometer. The second main part is an abridgment of Everett’s long
thesis, where his theory was originally elaborated in detail with clarity and rigor. Some minor comments
are added in the abridgment in light of recent developments. Even if you do not agree to Everett’s view, you
will still learn a great deal from his generalization of the uncertainty relation, his unique way of defining
entanglement (or canonical correlation), his formulation of quantum measurement using Hamiltonian, and
his relative state.

Part I: Prologue

Although Everett’s many-worlds theory is now well
known, it is still a minority view among physicists.
There are many reasons, which I have no intention to
discuss extensively here. One of the reasons may be
that many physicists have not read his work seriously.
Everett’s theory was presented in his PhD thesis, which
has two versions. The long version has over 130 pages
and was finished in 1956. It was published only 17 years
later for the first time with the title The Theory of The
Universal Wave Function in the book edited by DeWitt
and Graham [1] and was re-published with commen-
tary in 2012 [2]. Due to Bohr’s objection, Everett had
to shorten it. The short version became his official PhD
thesis at Princeton University [3] and was published
with the title “Relative State” Formulation of Quantum
Mechanics in Review of Modern Physics [4] accompa-
nied by an article by his advisor Wheeler [5].

On the one hand, Everett’s short thesis lacks many
important results in his long thesis, e.g., entanglement
(or canonical correlation) and formulation of quantum
measurement. On the other hand, the long version may
be too long for many people’s patience, which is further
exasperated by Everett’s mathematical notations that
are not familiar to modern readers. It is my hope that
this abridgment makes a good compromise between the
long and short thesis. In this abridged version, I will
keep its structure and stick to Everett’s original state-
ments as much as possible at key points while omitting
detailed discussion and derivations. Entanglement is all
over the long thesis. However, Everett never used the
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word entanglement; instead, he called it canonical cor-
relation or simply correlation. I will use entanglement
in this abridgment. In addition, I’ll use Dirac brackets
wherever possible.

Before the abridgment, I use the Mach–Zehnder
interferometer (MZI) to illustrate the many-worlds the-
ory. It appears to me that the MZI is a simple example
to illustrate all the essential points in Everett’s long
thesis. In particular, the MZI is ideal to demonstrate
interference between different worlds and the essence
of approximate measurement, which was discussed in
detail by Everett in his long thesis and has not been
discussed much since. Near the end of this part, I also
discuss the issue of preferred basis and I think that it
is related to the perceptive abilities of observers. Hope-
fully, this example of MZI will aid your reading of the
abridgment.

The two words, universe and world, are often used
differently by different people when they discuss
Everett’s theory. It was first dubbed “many-worlds”
theory by DeWitt [1]. In this way, we say that there
is one universe that consists of many different worlds.
However, Everett’s theory has recently often been called
the theory of multiverse. In this way, we say that there
is one world that consists of many different universes [6].
It rubs salt to the wound that multiverse has different
meanings for different people in literature [7,8]. So, to
avoid the confusion, we stick to DeWitt’s term and say
that there is one universe that consists of many different
worlds.

It is my sincere hope that you will eventually find
time to read Everett’s long thesis in its entirety, which
is richer in content than the short version and juicier
than this abridgment. Finally, even if you do not agree
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Fig. 1 Mach–Zehnder interferometer. M1 and M3 are half-
silvered mirrors; M2 and M4 are reflective mirrors. S is some
sample material that causes a phase shift to the photon’s
wave function. DH and DV are two photon detectors. Note
that M1 and M3 are not symmetric and their two sides are
made of materials of different refractive indices

to his view, you will certainly get entertained and
inspired by how Everett generalized uncertainty rela-
tion, defined entanglement (or canonical correlation),
formulated quantum measurement, and introduced rel-
ative state.

Part II: The universe of MZI

The Mach–Zehnder interferometer (MZI) was proposed
by Zehnder in 1891 [9] and was refined by Mach in
1892 [10]. Due to its simplicity and flexibility, the MZI
has not only enjoyed wide applications [11] but also
often been used for illustration of fundamental sub-
tleties in quantum mechanics [6,12]. We follow the
crowd and use it to illustrate Everett’s many-worlds
theory. We first briefly review the Mach–Zehnder inter-
ferometer (MZI) in a conventional way.

As shown in Fig. 1, MZI consists of four mirrors. The
mirrors M1 and M3 are half-silvered and serve as beam
splitter. The mirrors M2 and M4 are reflective. Initially,
the photon’s wave function has only the horizontal com-
ponent, i.e., |ψ0〉 = |φH〉. After the photon encounters
M1, its wave function splits and has two components

|ψ1〉 =
1√
2
(|φH〉 − |φV 〉). (0.1)

Note that there is an ambiguity for the phase differ-
ence between the transmitted component |φH〉 and the
reflection component |φV 〉. In general, the phase differ-
ence depends on the incident side of the beam splitter.
If δ1 is the phase difference when the photon is incident
on the left side of the beam splitter and δ2 is the phase
difference when the photon is incident on the right side,
then δ1 + δ2 = π [13]. The exact values of δ1 and δ2

depend on how the beam splitter is manufactured. In
the above we have used δ1 = π and δ2 = 0. This occurs
when the two sides of the beam splitter are made of

materials of different refractive indices [14]. With this
choice of phase differences, the beam splitter functions
exactly as a Hadamard gate.

The sample S causes a phase shift θ to the wave func-
tion that passes through; the reflections by the mirrors
M2 and M4 interchange |φH〉 and |φV 〉 and cause a π
phase shift. As a result, right before encountering the
mirror M3, the photon’s wave function becomes

|ψ′
1〉 =

1√
2
(eiθ |φH〉 − |φV 〉). (0.2)

At the mirror M3, |φH〉 further splits into two compo-
nents becomes (|φH〉 + |φV 〉)/√

2 and |φV 〉 splits into
(− |φH〉 + |φV 〉)/√

2. Consequently, we have

|ψ2〉 =
1
2
[
eiθ(|φH〉 + |φV 〉) + |φH〉 − |φV 〉 ]

= eiθ/2
(
cos

θ

2
|φH〉 + i sin

θ

2
|φV 〉 )

. (0.3)

This means that the probability that the photon be
detected by the detector DH is cos2(θ/2) and the prob-
ability detected by the detector DV is sin2(θ/2).

The mysterious part of the MZI is the following. On
the one hand, the photon wave function has two parts,
|φH〉 and |φV 〉, right before the detection. On the other
hand, in a single run of the experiment, there is only
one detection either at DH or DV . Suppose that DH

detects a photon in one experiment; this detection is
clearly triggered by the |φH〉 term in Eq. (0.3). So, why
does not the other term |φV 〉 trigger a detection at DV ?
What has happened to |φV 〉? According to the conven-
tional view , both |φH〉 and |φV 〉 can trigger detection,
but it is purely random which one triggers. Further-
more, when one of them triggers detection, the other
part magically disappears. This is called the collapse of
wave function. Everett showed in details the collapse of
wave function would lead to two difficulties in his long
thesis [1]. The first difficulty is that it would lead to log-
ical inconsistency when there are two or more observers;
the second difficulty is that it is inadequate to deal with
approximate measurement.

In both his long thesis and short thesis [1,4],
Everett had used branches or just elements of superpo-
sition instead of worlds referring to the different super-
position components in a wave function. Here in this
work, we will often use worlds as his theory is now
widely known as the many-worlds theory [1].

We now analyze MZI with the many-worlds theory.
We assume that the universe consists only of MZI and
nothing else. There is no gravity. The two detectors
can absorb the photon with 100% efficiency. The mir-
rors M1 and M3 are at rest initially and arranged as
in Fig. 1 with no support or attached wires while both
the mirrors M2 and M4 are fixed in space. With mir-
rors M1 and M3 movable, we can discuss the conditions
for interference to occur. If one consider a more com-
plicated situation where neither of the mirrors M2 and
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M4 are fixed, the analysis would become much more
complicated without gaining essentially new physics.

There are two different kinds of interactions in this
universe of MZI: photon with half-silvered mirror and
photon with the reflective mirror. We use Ue denote the
former and U0 the latter. The interaction at the mirror
M1 can be mathematically expressed as

Ue |φH〉 ⊗ |ψM1
0 〉

=
1√
2

(
|φH〉 ⊗ |ψM1

0 〉 − |φV 〉 ⊗ |ψM1
p1

〉
)

, (0.4)

where |ψM1
0 〉 and |ψM1

p1
〉 are the states of the mir-

ror before and after the interaction, respectively. After
the interaction, if the photon continues to move hor-
izontally, nothing changes; if the photon moves verti-
cally, the mirror acquires a momentum p1 and its state
becomes |ψM1

p1
〉. Overall, it results an entangled state

between the photon and the mirror. Similarly, at the
mirror M3, we have

Ue |φH〉 ⊗ |ψM3
0 〉

=
1√
2

(
|φH〉 ⊗ |ψM3

0 〉 + |φV 〉 ⊗ |ψM3
p1

〉
)

, (0.5)

and

Ue |φV 〉 ⊗ |ψM3
0 〉

=
1√
2

(
|φV 〉 ⊗ |ψM3

0 〉 − |φH〉 ⊗ |ψM3
p3

〉
)

. (0.6)

Note that p1 = −p3. The reflective interaction at the
mirror M2 has the following mathematical form

U0 |φH〉 ⊗ |ψM2
0 〉 = − |φV 〉 ⊗ |ψM2

0 〉 . (0.7)

And similarly at the mirror M4, we have

U0 |φV 〉 ⊗ |ψM4
0 〉 = − |φH〉 ⊗ |ψM4

0 〉 . (0.8)

No entanglement is generated in this interaction, and
the mirrors do not gain momentum as they are fixed in
space.

Initially, the universe of MZI is described by the fol-
lowing wave function

|Ψ0〉 = |φH〉 ⊗ |ψM1
0 〉 ⊗ |ψM2

0 〉
⊗ |ψM3

0 〉 ⊗ |ψM4
0 〉 ⊗ |ψDH

0 〉 ⊗ |ψDV
0 〉 . (0.9)

Whenever there is no confusion arising, we omit ⊗ and
simplify the above expression as

|Ψ0〉 = |φH , ψM1
0 , ψM2

0 , ψM3
0 , ψM4

0 , ψDH
0 , ψDV

0 〉 .

(0.10)

After the photon interacts with the mirror M1, we have

|Ψ1〉 = Ue |Ψ0〉 =
1√
2

(
|φH , ψM1

0 〉 − |φV , ψM1
p1

〉
)

⊗ |ψM2
0 , ψM3

0 , ψM4
0 , ψDH

0 , ψDV
0 〉 . (0.11)

According to the many-worlds theory, the two compo-
nents in |Ψ1〉, which are orthogonal to each other, rep-
resent two different worlds: in one world the photon
travels horizontally and in the other world the photon
travels vertically. After the sample S, we still have two
worlds but one world has acquired a phase shift

|Ψ′
1〉 =

1√
2

(
eiθ |φH , ψM1

0 〉 − |φV , ψM1
p1

〉
)

⊗ |ψM2
0 , ψM3

0 , ψM4
0 , ψDH

0 , ψDV
0 〉 . (0.12)

The photon is then reflected by the two mirrors M2 and
M4 and the state of the universe becomes

|Ψ2〉 = U0 |Ψ′
1〉 =

1√
2

(
|φH , ψM1

p1
〉 − eiθ |φV , ψM1

0 〉
)

⊗ |ψM2
0 , ψM3

0 , ψM4
0 , ψDH

0 , ψDV
0 〉 . (0.13)

The universe still has only two worlds. Now the photon
interacts with the mirror M3, resulting in the following
state of the universe

|Ψ3〉 = Ue |Ψ2〉
=

1
2

[
|φH , ψM1

p1
, ψM3

0 〉 + |φV , ψM1
p1

, ψM3
p1

〉

−eiθ(|φV , ψM1
0 , ψM3

0 〉 − |φH , ψM1
0 , ψM3

p3
〉)

]

⊗ |ψM2
0 , ψM4

0 , ψDH
0 , ψDV

0 〉 . (0.14)

It appears that there are now four worlds in the uni-
verse. But in general the four terms above are not
orthogonal to each other. There are in fact seven worlds.
To see it, let us expand |ψM1

p1
〉 as

|ψM1
p1

〉 = α1 |ψM1
0 〉 + β1 |ψM1

⊥ 〉 , (0.15)

where 〈ψM1
⊥ |ψM1

0 〉 = 0. Similarly, we have

|ψM3
p1

〉 = α3 |ψM3
0 〉 + β3 |ψM3

⊥ 〉 , (0.16)

and

|ψM3
p3

〉 = α∗
3 |ψM3

0 〉 + β∗
3 |ψM3∗

⊥ 〉 , (0.17)

where 〈ψM3
⊥ |ψM3

0 〉 = 〈ψM3∗
⊥ |ψM3

0 〉 = 0. In the above we
have used that p1 = −p3 implies |ψM3

p1
〉 = |ψM3∗

p3
〉. We

will discuss these coefficients α1,3 and β1,3 later. With
these expansions, we have

|Ψ3〉 =
1
2

[
(α1 + eiθα∗

3) |φH , ψM1
0 , ψM3

0 〉
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+(α1α3 − eiθ) |φV , ψM1
0 , ψM3

0 〉
+β1 |φH , ψM1

⊥ , ψM3
0 〉 + β∗

3eiθ |φH , ψM1
0 , ψM3∗

⊥ 〉
+α3β1 |φV , ψM1

⊥ , ψM3
0 〉 + α1β3 |φV , ψM1

0 , ψM3
⊥ 〉

+β1β3 |φV , ψM1
⊥ , ψM3

⊥ 〉
]

⊗ |ψM2
0 , ψM4

0 , ψDH
0 , ψDV

0 〉 . (0.18)

These seven terms are orthogonal to each other. In the
end, the photon is detected by the detectors and we
have a universe that consists of seven different worlds
that exist simultaneously. And the wave function of the
universe is

|Ψf 〉 =
1
2

[
(α1 + eiθα∗

3) |φH , ψM1
0 , ψM3

0 , ψDH
1 , ψDV

0 〉
+(α1α3 − eiθ) |φV , ψM1

0 , ψM3
0 , ψDH

0 , ψDV
1 〉

+β1 |φH , ψM1
⊥ , ψM3

0 , ψDH
1 , ψDV

0 〉
+β∗

3eiθ |φH , ψM1
0 , ψM3∗

⊥ , ψDH
1 , ψDV

0 〉
+α3β1 |φV , ψM1

⊥ , ψM3
0 , ψDH

0 , ψDV
1 〉

+α1β3 |φV , ψM1
0 , ψM3

⊥ , ψDH
0 , ψDV

1 〉
+β1β3 |φV , ψM1

⊥ , ψM3
⊥ , ψDH

0 , ψDV
1 〉

]

⊗ |ψM2
0 , ψM4

0 〉 . (0.19)

In this final state, everything in the universe except the
mirrors M2 and M4 are entangled together. The photon
detection should be presented as

|φH〉 ⊗ |ψDH
0 〉 → |ψDH

1 〉 (0.20)

to reflect the fact that the photon is absorbed by the
detector. However, in the above, to explicitly represent
the photon state before the detection, we have kept φH

and φV . This should not cause confusion.
We consider two special cases. In the first case, which

we call pure interference (PI) case, α1 = α3 = 1 and
β1 = β3 = 0. In the PI case, we have

|Ψf1〉 =
1
2

[
(1 + eiθ) |φH , ψM1

0 , ψM3
0 , ψDH

1 , ψDV
0 〉

+(1 − eiθ) |φV , ψM1
0 , ψM3

0 , ψDH
0 , ψDV

1 〉
]

⊗ |ψM2
p , ψM4

p 〉
= eiθ/2

[
cos

θ

2
|φH , ψDH

1 , ψDV
0 〉

+ sin
θ

2
|φV , ψDH

0 , ψDV
1 〉

]

⊗ |ψM1
0 , ψM3

0 , ψM2
0 , ψM4

0 〉 . (0.21)

This is exactly the state in Eq. (0.3). The only dif-
ference is that the states of mirrors and detectors are
not expressed explicitly in Eq. (0.3). This case happens
when the two mirrors M1 and M3 are very massive or
mounted in space and unmovable. Figure 2a shows how
the worlds split and evolve in this case. Initially, there is

Fig. 2 Worlds in the universe of Mach–Zehnder interfer-
ometer in two special cases. a The pure interference (PI)
case; b the pure split (PS) case. |ΨH〉 and |ΨV 〉 represent
worlds where the photon moves horizontally and vertically,
respectively. The superscript d in |Ψd

H〉 and |Ψd
V 〉 represents

the states of mirrors have changed relative to the initial
state of the MZI universe

only one world and it splits into two worlds with equal
weight at the mirror M1. These two worlds evolve in
parallel without changing their weights before interfer-
ing at the mirror M3. As a result of the interference,
we still have two worlds but with different weights. In
the special case θ = 0, there is only one world after the
interference.

Consider the second special case, α1 = α3 = 0 and
β1 = β3 = 1. We call it pure split (PS) case. In the PS
case, we have

|Ψf2〉 =
1
2

[
|φH , ψM1

p1
, ψM3

0 , ψDH
1 , ψDV

0 〉
+eiθ |φH , ψM1

0 , ψM3
p3

, ψDH
1 , ψDV

0 〉
−eiθ |φV , ψM1

0 , ψM3
0 , ψDH

0 , ψDV
1 〉

+ |φV , ψM1
p1

, ψM3
p1

, ψDH
0 , ψDV

1 〉
]

⊗ |ψM2
0 , ψM4

0 〉 . (0.22)

The evolution of the worlds in this case is illustrated in
Fig. 2b. The evolution is similar to the first case before
the mirror M3. The crucial difference is that there is
no interference at M3 in this case. Consequently, the
worlds keep splitting and we obtain four different worlds
with equal weights. And the phase shift θ has no effect
on the weights of the different worlds.

We now examine the expansions in Eqs. (0.15),
(0.16), (0.17) in detail. The mirrors, made of atoms,
have enormous amount of degrees of freedom. However,
in this MZI universe, only their centers of mass are rel-
evant. Moreover, their centers of mass move only along
p1 = −p3. With these considerations, we are allowed
to describe the states of the mirror M1 before and after
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the interaction as the following Gaussian wave packets

〈x|ψM1
0 〉 =

(
1

πa2

)1/4

exp
(

− x2

2a2

)
, (0.23)

and

〈x|ψM1
p1

〉 =
(

1
πa2

)1/4

exp
(

− x2

2a2
+ ikx

)
,

(0.24)

where a is the width of the wave packet and �k = |p1|.
We obtain

α1 = 〈ψM1
0 |ψM1

p1
〉 = exp

(
− 1

4
a2k2

)
. (0.25)

Similarly, we can compute α3 and find that α3 = α∗
3 =

α1. In real experiments, the wave length of the photon
is much larger than the width a, so we have α1 = α3 =
α∗

3 ∼ 1. This is exactly the PI case in Fig. 2a. One may
want to use a photon with much shorter wave length
so that α1 = α3 = α∗

3 � 1 and β1 = β3 = β∗
3 ∼ 1,

i.e., the PS case. However, the interaction of mirrors
with shorter-wave-length photon is very different and
the MZI can consequently cease to work.

There is one possible way to realize the PS case
as illustrated in Fig. 2b. This is to add a very sensi-
tive detector DP that is capable of measuring the tiny
momentum that a mirror gains after interacting with
the photon. If the momentum is zero, the detector is
described by |DP0〉; if the momentum is p1 or p3, the
detector has the state |DP1〉. These two states should
be orthogonal to each other 〈DP0|DP1〉 = 0 to reflect
the effectiveness of the detection. With the addition of
the new detector, the interaction Ue in Eq. (0.4) can be
rewritten as

Ue |φH〉 ⊗ |ψM1
0 〉 ⊗ |DP0〉

=
1√
2

(
|φH〉 ⊗ |ψM1

0 ,DP0〉 − |φV 〉 ⊗ |ψM1
p1

,DP1〉
)

.

(0.26)

Let |ψ̃M1
0 〉 = |ψM1

0 ,DP0〉 and |ψ̃M1
p 〉 = |ψM1

p1
,DP1〉.

We clearly have 〈ψ̃M1
0 |ψ̃M1

p 〉 = 0. As a result, when
we expand as in Eq. (0.15) for |ψ̃M1

p 〉, we should have
α1 = 0 and β1 = 1. Similarly, we should have α3 = 0
and β3 = 1. In this way, we have effectively realized the
PS case in Fig. 2b, where the worlds have split twice
with no interference. Note that the discussion with the
detector DP is a matter of principles, not for realistic
realization. In real experiments, other methods may be
used to distinguish the two states |ψM1

0 〉 and |ψM1
p1

〉 or
tell which direction the photon is going after encoun-
tering the mirror M1.

We now discuss the general case. As the above anal-
ysis shows that α1 = α3 = α and β1 = β3 = β∗

3 = β,

Fig. 3 Worlds in the universe of Mach–Zehnder interfer-
ometer in the general case. For clarity, the weight of each
world, which is represented by the length of the vertical line,
is not plotted to scale. The superscript d in |Ψd

H〉 and |Ψd
V 〉

represents the states of mirrors has changed relative to the
initial state of the MZI universe

we have

|Ψf 〉 =
1
2

[
αei θ

2 cos2
θ

2
|φH , ψM1

0 , ψM3
0 , ψDH

1 , ψDV
0 〉

+(α2 − eiθ) |φV , ψM1
0 , ψM3

0 , ψDH
0 , ψDV

1 〉
+β |φH , ψM1

⊥ , ψM3
0 , ψDH

1 , ψDV
0 〉

+βeiθ |φH , ψM1
0 , ψM3

⊥ , ψDH
1 , ψDV

0 〉
+αβ |φV , ψM1

⊥ , ψM3
0 , ψDH

0 , ψDV
1 〉

+αβ |φV , ψM1
0 , ψM3

⊥ , ψDH
0 , ψDV

1 〉
+β2 |φV , ψM1

⊥ , ψM3
⊥ , ψDH

0 , ψDV
1 〉

]

⊗ |ψM2
0 , ψM4

0 〉 . (0.27)

This wave function is a superposition of seven mutually
orthogonal elements, each of which describe a world. In
the order in the above equation, we call them worlds I,
II, III, IV, V, VI, and VII. The worlds I and II are the
results of interference with the world I existing only in
the PI case while the world II existing in both the PI
and PS cases. The worlds III, IV, and VII exist in the
PS case. The worlds V and VI are new and do not exist
in either of the two special cases. To understand these
two new worlds, we expand the interaction in Eq. (0.4)
with Eq. (0.15)

Ue |φH〉 ⊗ |ψM1
0 〉 =

1√
2

[
|φH〉 ⊗ |ψM1

0 〉

−α |φV 〉 ⊗ |ψM1
0 〉 − β |φV 〉 ⊗ |ψM1

⊥ 〉
]
.

(0.28)
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The term with α represents that the photon changes its
direction by the mirror M1 but the mirror state does not
change. We call it reflection with no detection. The term
with β represents that the photon changes its direc-
tion by the mirror M1 while the mirror state becomes
orthogonal to its original state. We call it reflection with
detection. So, in the world V, the photon is reflected by
the mirror M1 with detection and then reflected by the
mirror M3 with no detection; in the world VI, the pho-
ton is reflected by the mirror M1 with no detection and
then reflected by the mirror M3 with detection.

The analysis with the general case illustrates a crucial
point that the photon interferes only when its different
components, φH and φV , do not cause difference in the
rest of the universe (e.g., the mirrors and detectors).
Whenever the different components of an object’s wave
function cause difference in other objects, interference
disappears and decoherence occurs.

In his long thesis, Everett offered an insight into
quantum measurement. In his view, quantum measure-
ment is a generation of entanglement between two sub-
systems by an interacting Hamiltonian. We now illus-
trate it with the entanglement-generation interaction
described in Eq. (0.28). The photon is the “apparatus”
whose reading is given by the operator Âp. The eigen-
states of Âp are

|φ±〉 =
1√
2
(|φH〉 ± |φV 〉), (0.29)

such that Âp = ± |φ±〉. The system is the mirror M1,
whose property to be measured is given by the operator
B̂M . The eigenstates of B̂M are

|ψ1,2〉 =
1√
2
(|ψM1

0 〉 ∓ |ψM1
⊥ 〉) (0.30)

with eigenvalues being 1 and 2, respectively. Before the
interaction between the photon and the mirror, we have

|φH〉 ⊗ |ψM1
0 〉 =

1
2
(|φ+〉 + |φ−〉) ⊗ (|ψ1〉 + |ψ2〉),

(0.31)

where there is no entanglement between the photon and
the mirror at all. After the interaction Ue, we have Eq.
(0.28). We first consider the special PS case, α = 0 and
β = 1. In this case, we can rewrite the right-hand side
of Eq. (0.28) as

1√
2

(
|φH〉 ⊗ |ψM1

0 〉 − |φV 〉 ⊗ |ψM1
⊥ 〉

)

=
1√
2

(
|φ+〉 ⊗ |ψ1〉 + |φ−〉 ⊗ |ψ2〉

)
. (0.32)

We have a maximum entanglement (a perfect correla-
tion) here: when the apparatus (photon) reads ‘+’, we
know the mirror is in the state |ψ1〉; when the appa-
ratus reads ‘−’, the mirror is in the state |ψ2〉. In the

general case, after the interaction Ue, we have

Ue |φH〉 ⊗ |ψM1
0 〉

=

√
1 − α

2
|φ+〉 ⊗

(
α̃ |ψ1〉 +

α

α̃
|ψ2〉

)

+

√
1 + α

2
|φ−〉 ⊗

(α

α̃
|ψ1〉 + α̃ |ψ2〉

)
,

(0.33)

where α̃ = (
√

1 + α +
√

1 − α)/2. We no longer have
a perfect measurement. When the apparatus (photon)
reads either ‘+’ or ‘−’, the mirror is not in the eigen-
states of B̂M , the target of our measurement. When α
is only slightly smaller than one, the resulted states are
very close to the eigenstates of B̂M and can be regarded
as an approximation. Everett call this kind of measure-
ment approximate measurement. It is clear in the spe-
cial universe of MZI the approximate measurement is
more common than the precise measurement. It is the
same in our universe, the general universe.

Several caveats are warranted here. (1) The approx-
imation is not the result of noises or other random
factors in real experimental setup. (2) The two oper-
ators Âp and B̂M are introduced for theoretical illus-
tration; it seems unlikely that they can be realized in
real experiments. (3) To the best of my knowledge,
nobody appears to have studied approximate measure-
ment thoroughly since Everett , many fundamental
questions need to be answered, for example, the pre-
cise definition of approximate measurement.

The above discussion has led us to another intriguing
issue in quantum mechanics. We use Eq. (0.32) as an
illustration. On the left hand side, we have a familiar
universe that has split into two worlds: in one world,
the photon moves horizontally and the mirror stays the
same; in the other world, the photon moves vertically
and the mirror changes into a state orthogonal to its
original state. On the right-hand side, the same universe
is split to two very different worlds: in one world, the
photon is in the state φ+, an eigenstate of Âp, and
the mirror is in the state ψ1, an eigenstate of B̂M ; in
the other world, the photon is in the state φ− and the
mirror is in the state ψ2. In fact, there are infinite ways
to re-write this entangled state. So, which represents the
reality? For us, the world where the photon moves either
horizontally or vertically is the reality since we have the
ability to measure the photon’s position and the ability
to measure whether the mirror has momentum or not.
If a different kind of creature or instrument can make
measurements according to Âp and B̂M , then the right-
hand side of Eq. (0.32) is the reality.

What kind of world that we perceive depends on our
abilities of perception. These different abilities mathe-
matically correspond to different bases. Suppose |ΦU〉
is the wave function for the whole universe. For one
group of observers OA with a given set of measurement
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abilities, it can be decomposed in a set of basis as

|ΦU〉 = |Φ1〉 + |Φ2〉 + · · · + |Φj〉 + · · · (0.34)

These |Φj〉’s are the worlds perceived by OA. For
another group of observers OB with a different set of
measurement abilities, the universe wave function can
be decomposed in a different set of basis as

|ΦU〉 = |Φ̃1〉 + |Φ̃2〉 + · · · + |Φ̃j〉 + · · · (0.35)

The worlds Φj ’s are very different from the worlds
|Φ̃j〉’s. It is possible that even the space-time that we
are experiencing may look very different for another
group of observers.

Part III: Abridgment of Everett’s long thesis

This abridgment is done by mostly paraphrasing
Everett’s long thesis; Everett’s words in complete sen-
tences are rarely used. Chapters in the thesis become
sections in this abridgment. Everett used correlation
or canonical correlation to mean entanglement in his
thesis; I use entanglement in the abridgment wherever
correlation is meant entanglement in Everett’s thesis.
In some cases the mathematical notation of Everett has
been updated to more modern style, such as in the use
of Dirac bracket notation. The author’s words are indi-
cated with italic font.

1 Introduction

An isolated quantum system is completely described
by a wave function |ψ〉. According to standard text-
books on quantum mechanics the wave function |ψ〉 can
change in two fundamentally different ways [15]

Process 1 Observation with respect to operator Ô that
has eigenfunctions |φ1〉 , |φ2〉 , |φ3〉 , . . . will transforms
discontinuously the wave function |ψ〉 to one of the
eigenfunctions, |φj〉, with probability | 〈φj |ψ〉 |2.

Process 2 Continuous and deterministic change of the
state |ψ〉 with time according to the Schrödinger equa-
tion

ı�
∂

∂t
|ψ〉 = Ĥ |ψ〉 , (1.1)

where Ĥ is the operator.
Process 1 is commonly known as the collapse of wave

function.
The above scheme can lead to a paradox when there

are more than one observer. Consider a room isolated
in space where one observer A is to perform a mea-

surement on a system S and will record the result in
a notebook. The observer A is aware that the system
S is in a quantum state |ψ〉 that is not in an eigen-
state of the measurement. Another observer B is out-
side of the room. Beside knowing the quantum state
|ψ〉 and A is to perform a specified measurement, B
has no interaction at all with the room and everything
inside the room. The observer A performs the measure-
ment and records the result in the notebook. One week
later, B enters the room and performs his measure-
ment, that is, taking a look at the notebook. A and
B soon find themselves disputing each other: A insists
that Process 1 (the collapse of the wave function |ψ〉
occurred when he performed the measurement. B is con-
fident that the whole room should evolve according to
Process 2 for one week. Process 1 occurred only when
he enters the room and performs his observation by
looking at the notebook. There are five different ways
to resolve the paradox or the dispute between A and
B.

Alternative 1 To postulate that there is only one
observer in the universe.

Alternative 2 To limit the applicability of quantum
mechanics: quantum theory fails when it is applied to
observers, measuring devices, or more generally any sys-
tem of macroscopic size.

Alternative 3 To deny the possibility of the outside
observer B could ever be in possession of the state func-
tion of A and S, where A is the observer inside the lab
and S is the quantum system that A measures.

Alternative 4 To abandon the position that a wave func-
tion is a complete description of a system.

Alternative 5 To assume that the universal validity of
the quantum description by the complete abandonment
of Process 1, i.e., the collapse of wave function.

Alternatives 1 and 2 are clearly hard to defend.
Alternative 4 can be viewed as hidden variable theory.
Local hidden variable theory has been refuted by Bell’s
inequality [16].

Alternative 3 is a bit ambiguous, at least in my opin-
ion. No matter what, the first four alternatives need
additional assumptions. In contrast, alternative 5 has
many advantages:

• It relies on two basic ingredients of quantum mechan-
ics: (1) The wave function |ψ〉 in a Hilbert space
offers a complete description of a quantum sys-
tem; (2) |ψ〉 evolves unitarily according to the
Schrödinger equation.

• The quantum theory applies to the entire universe.
• Measurement is no longer a special process and can

be described as any other physical processes.

The key for developing alternative 5 is to study com-
posite quantum systems and exploit the entanglement
(or correlation in Everett’s own words) between subsys-
tems.
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2 Probability, information, and correlation

This section (or chapter as used in Everett’s thesis)
offers a very general mathematical treatment of infor-
mation and correlation, which is used in later sections
to define correlation (or entanglement) between differ-
ent quantum subsystems.

2.1 Finite joint distribution

For a collection of finite sets, X 1,X 2, . . . ,X n, we can
define a joint probability distribution, P (x1

i , x
2
j , . . . , x

n
k ),

where x1
i ∈ X 1, x2

j ∈ X 2, . . . , xn
k ∈ X n. This is the prob-

ability that events x1
i , x

2
j , . . . , x

n
k occur simultaneously.

We can also define the marginal distribution

P (x1
i , x

2
k, . . . , xj

�)

=
∑

X j+1,X j+2,...,X n

P (x1
i , x

2
k, . . . , xj

� , x
j+1
p , . . . , xn

q ),

(2.1)

where the summation is over all possible elements
in X j+1,X j+2, . . . ,X n. This is the probability that
events x1

i , x
2
k, . . . , xj

� occur with no restrictions on other
sets X j+1,X j+2, . . . ,X n. The conditional distribution
is defined as

Pxj+1
p ,...,xn

q
(x1

i , x
2
k, . . . , xj

�)

=
P (x1

i , x
2
k, . . . , xj

� , x
j+1
p , . . . , xn

q )

P (xj+1
p , . . . , xn

q )
, (2.2)

which is the probability that events x1
i , x

2
k, . . . , xj

� occur
while other variables are fixed at xj+1

p , . . . , xn
q .

For any function f(x1
i , x

2
j , . . . , x

n
k ) defined on sets

X 1,X 2, . . . ,X n, its expectation is defined as

〈f〉 =
∑

X 1,X 2,...,X n

P (x1
i , x

2
j , . . . , x

n
k )f(x1

i , x
2
j , . . . , x

n
k )

(2.3)

where the summation is over all possible values in sets
X 1,X 2, . . . ,X n. Two variables X 1 and X 2 are indepen-
dent if the joint distribution P (x1

i , x
2
j ) = P (x1

i )P (x2
j ).

2.2 Information for finite distributions

For a single random variable X with distribution P (xi),
its information IX is defined as

IX =
∑

i

P (xi) ln P (xi) = 〈ln P (xi)〉 . (2.4)

This is just the negative of Shannon’s entropy. If X has
m different values, the maximum of IX is zero and the
minimum of IX is − ln m. The former corresponds to

the case where one value, say xj , has P (xj) = 1 and
the other values have P (x �= xj) = 0. The latter is
the case where every value has the same probability
P (xj) = 1/m. This definition can be easily generalized
for many variables X 1,X 2, . . . ,X n

IX 1,X 2,...,X n

=
∑

X 1,X 2,...,X n

P (x1
i , x

2
j , . . . , x

n
k ) ln P (x1

i , x
2
j , . . . , x

n
k )

= 〈ln P (x1
i , x

2
j , . . . , x

n
k )〉. (2.5)

Similarly, one can also define information for the condi-
tional distribution. It is clear that if all the random vari-
ables X 1,X 2, . . . ,X n are independent from each other,
we have

IX 1,X 2,...,X n = IX 1 + IX 2 + · · · + IX n . (2.6)

2.3 Correlation for finite distributions

For two random variables X and Y, the correlation
between them is defined as

C(X ,Y) = IX ,Y − IX − IY . (2.7)

It is clear that we have C(X ,Y) = 0 if two ran-
dom variables X and Y are independent. This defini-
tion can be generalized to group correlations. Suppose
we have groups of random variables, X 1,X 2, . . . ,X n;
Y1,Y2, . . . ,Ym; . . .; Z1,Z2, . . . ,Z�, the correlation
between these groups is

C(X 1, . . . ,X n;Y1, . . . ,Ym; . . . ;Z1, . . . ,Z�)
= IX 1,...,X n;Y1,...,Ym;...;Z1,...,Z�

−IX 1,...,X n − IY1,...,Ym − . . . − IZ1,...,Z� .

(2.8)

A special case of this group correlation is

C(X 1,X 2, . . . ,X n) = IX 1,X 2,...,X n

−IX 1 − IX 2 − . . . − IX n . (2.9)

2.4 Generalization and further properties of
correlation

We shall now generalize the definition of correlation to
joint probability distributions over arbitrary sets of any
cardinality. To do this, we consider the refinement of a
finite distribution. Consider a random variable X con-
sisting of finite number of events {x1, x2, . . . , xn}. It is
possible that the event xi is actually the disjunction of
several exclusive events {x̃i,1, x̃i,2, . . . , x̃i,μ}. The distri-
bution P ′(x̃i,ν) is called a refinement of the distribution
P (xi)

P (xi) =
∑

ν

P ′(x̃i,ν), (2.10)
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where the summation is over all possible values of ν
for a given xi. This can easily be generalized to multi-
ple variables. For a distribution P (xi, yj) of two random
variables X and Y and its refinement P (x̃i,μ, ỹj,ν), there
exist two correlations C(X ,Y) and C ′(X ,Y), respec-
tively. There is an interesting and important relation
between these two corrections

C ′(X ,Y) ≥ C(X ,Y). (2.11)

With this relation, we can generalize the correlation to
any probability measure over continuous variables.

For simplicity, we consider two continuous random
variables X and Y and a probability measure M(X ,Y)
over their Cartesian product. We can divide X into
finite subsets Xi and Y into finite subsets Yj . This
naturally leads to a probability distribution P1(Xi,Yj),
which can be obtained by integration of M(X ,Y) over
these subsets. With P1(Xi,Yj), we can compute the cor-
relation C1(X ,Y) between X and Y. By further divid-
ing the subsets Xi and Yj , we can have another corre-
lation C2(X ,Y). By repeating the process, we have a
sequence of correlations

C1(X ,Y) ≤ C2(X ,Y) ≤ · · · ≤ Cn(X ,Y). (2.12)

As a result, the correlation between two continuous ran-
dom variables X and Y is defined as

C(X ,Y) = lim
n→∞ Cn(X ,Y), (2.13)

where n → ∞ means that the division becomes finer
and finer, approaching the continuous limit.

Suppose that f is a one-one map, U = f(X ), and g
is a one-one map, V = g(Y). We have

C(X ,Y) = C(U ,V). (2.14)

This shows that the correlation is invariant under one-
to-one transformation.

2.5 Information for general distribution

For a random variable X with a finite set of values {xi},
we assign a positive number ai to each value xi. These
ai are called information measure. If the probability
distribution is P (xi), its information relative to this
information measure is defined as

IX =
∑

i

P (xi) ln
P (xi)

ai
= 〈ln P (xi)

ai
〉 . (2.15)

For multiple variables, say, X ,Y,Z, with information
measures {ai}, {bj}, {ck}, respectively, and a joint
probability distribution P (xi, yj , zk), their information
relative to these measures are

IXY Z =
∑

ijk

P (xi, yj , zk) ln
P (xi, yj , zk)

aibjck
. (2.16)

The previous definition of information is a special case
where all values of {ai}, {bj}, {ck} in the informa-
tion measure are unity. Interestingly, the correlation
C(X ,Y,Z) is independent of information measure.

The advantage of introducing information measure is
that we can now generalize information for continuous
variables. For example, for a continuous variable, X ,
with a probability distribution P (x), we can divide it
into finite sets Xi and use μi for the Lebesgue measure
of the set Xi. We then have

Iμ
X =

∑

i

P (xi) ln
P (xi)

μi
. (2.17)

where P (xi) is the probability over the set Xi. We can
further divide and refine the sets Xi and define informa-
tion correspondingly. These information form a series
which has an upper limit. We define this upper limit
as the information for X with probability distribution
P (x)

IX = lim
μ

Iμ
X . (2.18)

3 Quantum mechanics

Quantum mechanics has two basic ingredients: (1) the
states of a quantum system are vectors in a Hilbert
space; (2) the time evolution of an isolated quantum
system is given by a linear wave equation. One crucial
question is whether we need more to relate quantum
mechanics to our experimental and daily experience.
Many physicists represented by von Neumann think that
we need at least one more ingredient, Process 1, which
was mentioned at the beginning. Everett thinks that no
more ingredient (or assumption) is needed.

3.1 Composite quantum systems

Consider a pair of quantum systems S1 and S2. If their
Hilbert spaces are H1 and H2, respectively, the Hilbert
space of the composite system S = S1 +S2 is H1 ⊗H2.
If |ξj〉 is a complete orthonormal set for H1 and |ηj〉 for
H2, a general state of S = S1 +S2 can be expressed as

|Ψ〉 =
∑

ij

cij |ξi, ηj〉 , (3.1)

where |ξi, ηj〉 is a shorthand for |ξi〉⊗|ηj〉. The concepts
introduced in the last section can be applied here. Let Â
be a Hermitian operator on S1 with eigenfunctions |φi〉
and eigenvalues μi and B̂ be a Hermitian operator on
S2 with eigenfunctions |ϕi〉 and eigenvalues νi. Then,

Pij = | 〈φi, ϕj |Ψ〉 |2 (3.2)

is a joint square-amplitude distribution of the quan-
tum state |Ψ〉 over Â and B̂. Note that Everett did not
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use probability distribution here. The physical meaning
of square amplitude is discussed later. It has two
marginal distributions

P (φi) =
∑

j

| 〈φi, ϕj |Ψ〉 |2, (3.3)

and

P (ϕj) =
∑

i

| 〈φi, ϕj |Ψ〉 |2. (3.4)

Correspondingly, there are two conditional distribu-
tions

Pj(φi) = Pij/P (ϕj), (3.5)

Pi(ϕj) = Pij/P (φi). (3.6)

These distributions can be used to compute the marginal
and conditional expectations of Â or B̂.

A key concept introduced by Everett is relative state.
For a given state |η〉 in S2, there is a corresponding
relative state in S1,

|φη〉 = Nη 〈η|Ψ〉 = Nη

∑

ij

cij |ξi〉 〈η|ηj〉 , (3.7)

where Nη is a normalization constant. For a given state
|η〉, its relative state |φη〉 is clearly unique and inde-
pendent of |ξi〉 and |ηi〉. The relative state |φη〉 can be
used to compute expectation of any operator Â on S1

conditioned by the state |η〉 in S2.
If |η〉 is one of the basis states |ηj〉, we have

|φηj
〉 = Nηj

∑

i

cij |ξi〉 . (3.8)

It is clear that

|Ψ〉 =
∑

j

1
Nηj

|φηj
〉 ⊗ |ηj〉 . (3.9)

Two different relative states |φηj
〉 and |φηk

〉 are not
necessarily orthogonal

〈φηj
|φηk

〉 = Nηj
Nηk

∑

i

c∗
ijcik �= 0. (3.10)

In a general state |Ψ〉 of S, the subsystem S1 cannot
be described by a single state but by a mixture of states.
We usually use the density matrix to describe this kind
of mixture. For the whole system, it is always in a pure
state |Ψ〉 and its density matrix is

ρ = |Ψ〉 〈Ψ| . (3.11)

By tracing out the subsystem S2, we have the density
matrix for the subsystem S1

ρ1 =
∑

ik

∑

j

cijc
∗
kj |ξi〉 〈ξk| =

∑

j

1
N 2

ηj

|φηj
〉 〈φηj

| .

(3.12)

Similarly, we can define ρ2. The most important con-
clusion of this section is that it is meaningless to ask
the absolute state of a subsystem—one can only ask
the state relative to a given state of the remainder of
the system. What Everett is discussing here is of course
entanglement: in a composite system where the subsys-
tems are entangled, the subsystems are described by den-
sity matrices not pure quantum states.

3.2 Information and correlation in quantum
mechanics

Consider an operator Â, which has eigenstates |ξi〉 with
eigenvalues μi. The information of this operator in a
given state |ψ〉 is defined as

IA(ψ) =
∑

i

| 〈ξi|ψ〉 |2 ln | 〈ξi|ψ〉 |2. (3.13)

The operator Â has been assumed to be non-degenerate.
If Â is degenerate, that is, for eigenvalue μi, there are
multiple eigenstates |ξi,λ〉 (λ = 1, 2, . . . ,mi), its infor-
mation is defined as

IA(ψ) =
∑

i

(
∑

λ

| 〈ξi,λ|ψ〉 |2
)

ln
∑

λ | 〈ξi,λ|ψ〉 |2
mi

.

(3.14)

For convenience, we introduce projection operator

Pi =
∑

λ

|ξi,λ〉 〈ξi,λ| , (3.15)

with which we have

∑

λ

| 〈ξi,λ|ψ〉 |2 = Tr(ρPi), (3.16)

where ρ = |ψ〉 〈ψ|. The information of operator Â now
has a concise form

IA(ψ) =
∑

i

Tr(ρPi) ln
Tr(ρPi)

mi
. (3.17)

We consider again the composite system S = S1+S2.
For the operator Â that acts only on S1 and B̂ only on
S2, we assume for simplicity that both of them have no

123



Eur. Phys. J. H (2021) 46 :7 Page 11 of 20 7

degeneracy. Their joint information is

IA,B(Ψ) =
∑

ij

Tr(ρPA
i PB

j ) ln Tr(ρPA
i PB

j ), (3.18)

where PA
i = |ξi〉 〈ξi|, PB

j = |ηj〉 〈ηj |, and ρ = |Ψ〉 〈Ψ|.
The marginal information for the operator Â and the
operator B̂ is

IA(Ψ) =
∑

i

Tr(ρ1PA
i ) ln Tr(ρ1PA

i ) (3.19)

and

IB(Ψ) =
∑

j

Tr(ρ2PB
j ) ln Tr(ρ2PB

j ), (3.20)

where ρ1 = Tr2(|Ψ〉 〈Ψ|) and ρ2 = Tr1(|Ψ〉 〈Ψ|). We
define the correlation between Â and B̂ as

CA,B(Ψ) = IA,B(Ψ) − IA(Ψ) − IB(Ψ)

=
∑

ij

Tr(ρPA
i PB

j ) ln
Tr(ρPA

i PB
j )

Tr(ρ1PA
i )Tr(ρ2PB

j )
.

(3.21)

Without loss of generality, we assume that the dimen-
sion of the Hilbert space H1 is equal or bigger than H2.
The reduced density matrix ρ2 for the subsystem S2 is a
Hermitian matrix and it can be diagonalized with non-
negative eigenvalues. Suppose that its eigenvectors are
|ϕj〉 with eigenvalues vj . If |ξi〉 is the complete basis of
the subsystem S1, the relative state of |ϕj〉 for a general
state |Ψ〉 is

|φj〉 = Nϕj

∑

i

|ξi〉 〈ξi, ϕj |Ψ〉 . (3.22)

One can show that |φj〉’s are orthonormal to each
other,

〈φj |φk〉 = Nϕj
Nϕk

∑

i,l

〈ξi|ξl〉 〈ξi, ϕj |Ψ〉 〈Ψ|ξl, ϕk〉

= Nϕj
Nϕk

∑

i

〈ξi, ϕj |Ψ〉 〈Ψ|ξi, ϕk〉

= Nϕj
Nϕk

∑

i

〈ϕj |ρ2|ϕk〉 = δj,k. (3.23)

Note the difference between here and Eq. (3.10), where
|ηj〉’s are not the eigenstates of ρ2. As a result, we have

|Ψ〉 =
∑

j

vj |φj , ϕj〉 . (3.24)

This is called canonical representation of |Ψ〉 by Everett
and it is of course just the Schmidt decomposition. Now

let us choose Â = ρ1 and B̂ = ρ2, and assume that there
is no degeneracy in eigenvalues vj . We have

Iρ1,ρ2(Ψ) = Iρ1(Ψ) = Iρ2(Ψ) =
∑

j

vj ln vj (3.25)

Consequently, we have

Cρ1,ρ2(Ψ) = −
∑

j

vj ln vj

= −Tr(ρ1 ln ρ1) = −Tr(ρ2 ln ρ2). (3.26)

This special correlation is called canonical correlation
by Everett and it is, of course, exactly entanglement.
For convenience, we let C(Ψ) = Cρ1,ρ2(Ψ). One may
conjecture that, for any pair of operator Â on S1 and
operator B̂ on S2, the following inequality holds

CA,B(Ψ) ≤ C(Ψ). (3.27)

This conjecture has now been proved rigorously by Don-
ald [17].

For operators x̂ and k̂ = p̂/�, there is the Heisenberg
uncertainty relation

ΔxΔk ≥ 1
4
. (3.28)

Everett conjectured that in terms of information this
relation can be written as

Ix + Ik ≤ ln
1
πe

. (3.29)

This conjecture has been proved in Ref. [18], where
Everett was not acknowledged.

3.3 Measurement

Everett regarded measurement as a natural process
in quantum mechanics and there is no fundamental
distinction between “measuring apparatus” and other
physical systems. For Everett , a measurement is sim-
ply a special interacting process between two quantum
subsystems, which results in the end that the property
of the measured subsystem is correlated to a quantity in
the measuring subsystem. The measuring process has
two characteristics that distinguish it from other inter-
acting processes.

Suppose that we have two subsystems S1 and S2, ini-
tially in a product state |Ψ0〉 = |ψ0, φ0〉 = |ψ0〉 ⊗ |φ0〉.
The system will evolve dynamically under a Hamilto-
nian Ĥ of the whole system. According to the analysis
in the above subsections, at any moment, the overall
state |Ψ(t)〉 can be decomposed canonically as

|Ψ(t)〉 =
∑

j

pj |ψj(t), φj(t)〉 (3.30)
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where |ψj(t)〉’s and |φj(t)〉’s are eigenfunctions of two
operators Â(t) and B̂(t), respectively. The Hamiltonian
Ĥ is said to generate a measurement if the following
limits exist

Â∞ = lim
t→∞ Â(t) , B̂∞ = lim

t→∞ B̂(t) (3.31)

and they do not depend on initial conditions.
There is one requirement for a Hamiltonian Ĥ to gen-

erate a measurement: Ĥ does not decrease the informa-
tion in the marginal distribution of Â. This means that
if initially |Ψ0〉 = |ζ, φ0〉 where |ζ〉 is an eigenfunction of
Â, we should have at any time that |Ψ(t)〉 = |ζ, φ(t)〉.
The requirement is necessary for the repeatability of
measurements: if a spin is measured to be up along the
z direction, it should be still up when we measure it
again along the z direction.

In sum, a Hamiltonian Ĥ is said to generate a mea-
surement of Â in S1 by B̂ in S2 if the following two con-
ditions are satisfied: (1) the correlation CA,B increases
to its maximum with time; (2) Ĥ does not decrease the
marginal information of Â.

We now turn to a model proposed by von Neu-
mann [15] to illustrate the above definition of quan-
tum measurement. This model consists of a particle of
one coordinate q̂ and an apparatus of one coordinate r̂
(which may represents the position of a meter needle).
The interaction between them is very strong so that
we neglect all the kinetic energies. This means that the
whole Hamiltonian is given by

ĤI = −i�q
∂

∂r
. (3.32)

If the initial condition is a product state

|Ψ0〉 =
∫

dqφ(q) |q〉
∫

drη(r) |r〉

=
∫

dqdrφ(q)η(r) |q, r〉 , (3.33)

it is straightforward to find the evolution of this state

|Ψ(t)〉 =
∫

dqdrφ(q)η(r − qt) |q, r〉 . (3.34)

Let us consider a special case η(r) = δ(r − r0), that
is, the apparatus needle initially points to a definite
position r0. In this case, we have

|Ψ(t)〉 =
∫

dqφ(q) |q, r0 + qt〉 . (3.35)

It is clear that ĤI has kept the marginal information of
q̂. Let us consider the correlation Cq,r(t). Initially, we
have Cq,r(t) = 0. At time t, we have

Cq,r(t) = Iq,r(t) − Iq(t) − Ir(t)

= −Iq(0) = −
∫

dq|φ(q)|2 ln |φ(q)|2. (3.36)

The correlation Cq,r(t) has increased to its maximum as
soon as t is not zero. The above analysis clearly shows
that the Hamiltonian ĤI generates a measurement of
q̂ for the system by r̂ of the apparatus. The general
case that the apparatus needle has no definite position
initially is more complicated and was discussed in the
long thesis by Everett .

In the above discussion, the apparatus initially has a
definite position r0. After measurement, the apparatus
no longer has a definite position. In fact, according to
Eq. (3.35), the apparatus is in a superposition of states
of different positions and the probability of its position
at r0 + qt is |φ(q)|2. If this apparatus is of macroscopic
size, this means that its meter needle does not point
to a definite position. We of course have never seen
this kind of measurement in any laboratory or similar
phenomena in our daily life. To resolve this dilemma,
one possible way to assume that the mysterious collapse
of wave function (Process 1) during the measurement.
Everett found that one can resolve this dilemma within
the framework of quantum mechanics without additional
assumption.

4 Observation

Observers are introduced as purely physical systems
and are treated completely within the framework of
quantum mechanics. In other words, observers are sim-
ply usual quantum systems. If this treatment is suc-
cessful, it should build a consistent picture between the
appearance of phenomena, i.e., the subjective experi-
ence of observers, and the usual probabilistic interpre-
tation of quantum mechanics.

4.1 Formulation of the problem

One can regard an observer as an automatically func-
tioning machine that has sensors and the capacity to
record or register past sensory data and machine con-
figurations. When an observer O has observed the event
α, it means that O has changed to a new state that
depends on α. Observers are assumed to have memo-
ries; the subjective experience of an observer is related
to the contents of its memory. As a result, the quantum
state of an observer O should be written as

|ψO
[A,B,...,C]〉 (4.1)

where A,B, . . . , C represent memories in the order of
time. Sometimes [. . . , A,B, . . . , C] is used to indicate
the possible previous memories that are not relevant
for the current observations.

Consider an observer O who wants to measure (or
observe) the property Â of a system S. The eigenfunc-
tions of Â are |φj〉’s. Initially, the system S is in one
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of the eigenfunctions |φj〉’s of Â and the observer is in
state |ψO

[...]〉. A good observation is defined as the one
that results in transforming

|ψS+O〉 = |φj〉 ⊗ |ψO
[...]〉 = |φj ;ψO

[...]〉 (4.2)

to

|ψ̃S+O〉 = |φj〉 ⊗ |ψO
[...,αj ]

〉 = |φj ;ψO
[...,αj ]

〉 (4.3)

The semicolon is used here and will be used to delimit
the system state and the observer state. The require-
ment that the system state |φj〉 is unchanged is neces-
sary if you want the observation is repeatable. It is clear
that observation is just quantum measurement (intro-
duced in the last section) with memories.

4.2 Deductions

If the system initially is in a general quantum state
described by

∑
j aj |φj〉, the final total state after a

good observation is

|ψ̃S+O〉 =
∑

j

aj |φj ;ψO
[...,αj ]

〉 . (4.4)

This follows directly from the superposition principle
and is consistent with the general framework of quan-
tum mechanics. Two features stand out in the above
equations. (1) There is entanglement between the sys-
tem and the observer and, as a result, neither of them
has its independent state. (2) The result seems to con-
tradict our daily experience. On the one hand, the final
states are superposition of many different states, each
of which corresponds to a definite observation outcome;
on the other hand, there is only one outcome in our
daily experience.

Here comes Everett’s genius. Everett thinks that each
superposition element in Eq. (4.4) represents a “world”
and the observer observes different outcomes in differ-
ent “worlds”. Since the quantum dynamical evolution
is linear, which respects the superposition, each world
evolves on its own and in each world the observer expe-
riences only one definite outcome. This is in accor-
dance with our daily experience; at the same time, no
additional assumption, such as the collapse of wave
function, is needed. This is the so-called many-worlds
interpretation. However, Everett himself never called
each superposition element “world”; “many-worlds”
was coined by de Witt in 1970s [1]. Everett called it
branch.

The above observation should be the same even in
the presence of other systems which do not interact
with the observer O. We thus have the general rules of
observation.

Rule 1 The observation of a quantity Â, with eigen-
functions |φ〉S1

j , in a system S1 by the observer O, trans-

forms the total state according to

|ψS1 , ψS2 , . . . , ψSn ;ψO
[...]〉

→
∑

j

aj |φS1
j , ψS2 , . . . , ψSn ;ψO

[...,αj ]
〉 , (4.5)

where |ψS1〉 , |ψS2〉 , . . . , |ψSn〉 are the initial quantum
states for systems S1, S2, . . . , Sn, respectively, and aj =
〈φS1

j |ψS1〉.
Rule 2 Rule 1 may be applied separately to each
element of a superposition of total system states, the
results are superposed to obtain the final total state.
Thus, a determination of B̂, with eigenfunctions |φk〉S2 ,
on S2 by the observer O transforms the total state

∑

j

aj |φS1
j , ψS2 , . . . , ψSn ;ψO

[...,αj ]
〉 (4.6)

to
∑

jk

ajbk |φS1
j , φS2

k , ψS3 , . . . , ψSn ;ψO
[...,αj ,βk]〉 , (4.7)

where bk = 〈φS2
k |ψS2〉. These two rules follow directly

from the superposition principle and are consistent with
the general framework of quantum mechanics.

Consider again the simple case where there is one
system and one observer. The observation results in Eq.
(4.4). If one repeats this observation, according to Rule
2, the total state becomes

∑

j

aj |φj ;ψO
[...,αj ,αj ]

〉 . (4.8)

Each superposition element in the above now describes
that the observer has obtained the same result for both
observations. That is, in each world, the observation is
repeatable. This is consistent with our experience.

Let us go one step further by considering many dif-
ferent systems which are initially in the same state

|ψS1〉 = |ψS2〉 = · · · = |ψSn〉 =
∑

j

aj |φj〉 . (4.9)

Therefore, the initial state of the total system is

|ψS1+S2+···+Sn+O
0 〉 = |ψS1 , ψS2 , . . . , ψSn ;ψO

[...]〉 .

(4.10)

The measurement is performed on the systems in the
order S1, S2, . . . , Sn. After the first measurement on S1,
we have

|ψS1+S2+···+Sn+O
1 〉 =

∑

j

aj |φ1
j , ψ

S2 , . . . , ψSn ;ψO
[...,α1

j ]〉 .

(4.11)
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The total state after the second measurement is

|ψS1+S2+···+Sn+O
2 〉
=

∑

j

ajak |φ1
j , φ

2
k, ψS3 , . . . , ψSn ;ψO

[...,α1
j ,α2

k]〉 .

(4.12)

After r ≤ n measurements have taken place, we have

|ψS1+S2+···+Sn+O
r 〉 =

∑

j

ajak . . . a�

|φ1
j , φ

2
k, . . . , φr

� ;ψ
Sr+1 , . . . , ψSn ;ψO

[...,α1
j ,α2

k,...,αr
� ]〉 .

(4.13)

Each of the superposition elements, which is one
of the many worlds, describes an observer which
has observed an apparently random sequence of defi-
nite results represented by [. . . , α1

j , α
2
k, . . . , αr

� ]. If one
repeats the measurement on the system Sm (m <
r), the observer would get a memory sequence of
[. . . , α1

j , . . . , α
m
k , . . . , αr

� , α
m
k ]. In each world, the observer

feels the “collapse” of wave function.
To make sense of the coefficients ajak . . . a� before

each superposition element, we need to assign a measure
to them. We first consider a superposition state

|ψ〉 =
∑

j

aj |φj〉 . (4.14)

To assign a measure, we first need that each element
is normalized 〈φj |φj〉 = 1. For each element |φj〉, the
assigned measure is M(aj), which is a non-negative
function. We could change |φj〉 to eiθ |φj〉 and aj to
e−iθaj , then the measure M(aj) assigned to this ele-
ment becomes M(e−iθaj). However, physically noth-
ing has been changed. Therefore, we need M(aj) =
M(e−iθaj). For this to be true, it is clear that M(aj)
should depend only on the amplitude of aj , that is,
M(|aj |).

In reality, due to the accuracy of the measurement
or other reasons, we often regard a group of states
|φp〉 , |φp+1〉 , . . . , |φq〉 as the same, i.e.,

ã |φ̃〉 =
q∑

j=p

aj |φj〉 , (4.15)

where 〈φ̃|φ̃〉 = 1 is normalized. We require the additiv-
ity for the measure, that is,

M(|ã|) =
q∑

j=p

M(|aj |). (4.16)

〈φ̃|φ̃〉 = 1 implies that

|ã|2 =
q∑

j=p

|aj |2 (4.17)

and

M(

√√
√
√

q∑

j=p

|aj |2) =
q∑

j=p

M(|aj |). (4.18)

The only choice is the square amplitude measure,
M(|aj |) = c|aj |2, where c can be fixed by requiring∑

j M(|aj |) = 1.
This square amplitude measure M is of probability

nature. Everett discussed this for general cases. I’ll use
a simple case to illustrate. Let us consider a simple sys-
tem of spin-1/2. Suppose that there are n copies of them
and their states are the same

|ψS1〉 = |ψS2〉 = · · · = |ψSn〉 =
1√
2
(|u〉 + |d〉),

(4.19)

where |u〉 is for spin up and |d〉 is for spin down. We
make observations of the spins of σ̂z. If the spin up |u〉
is registered as 0 and the spin down |d〉 is registered as
1, we have after measuring all the spins

|ψfinal
n 〉 =

1√
2n

∑

|u1, d2, . . . , drur+1, . . . , un;ψO
[...,01,12,...,1r0r+1,...,0n]〉 ,

(4.20)

where the summation is over all possible sequences of
0’s and 1’s of length n. Most of times, we only care
about how many of these spins are up and how many of
them down. So, we group these states according to how
many spins are up

√
n!

m!(n − m)!2n
|φ̃m〉 =

1√
2n

∑

m ups

|u . . . d〉 .

(4.21)

where |φ̃m〉 represents a state where m of the n spins
are up. The measure M for the group of m up spins is

Mm =
n!

m!(n − m)!2n
, (4.22)

which is exactly the probability that one observes the
state of spin up m times when making n repeated same
measurements. What happens here is that, after n mea-
surements, it splits into 2n branches of worlds, each of
which is equally probable and has a different sequence
of 0’s and 1’s registered. The chance being in a world
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where there are m up spins (or m 0s) is Mm. In gen-
eral, if the spin is in a state |φ〉 = a |u〉 + b |d〉, we still
have 2n branches of worlds after n measurements but
the chance being in a world where there are m up spins
(or m 0’s) is

M′
m =

n!
m!(n − m)!

|a|2m|b|2(n−m). (4.23)

The number of branches has nothing to do with the prob-
ability measure |a|2 or |b|2; it depends on the observation
outcomes.

The above results can be straightforwardly general-
ized to the cases where different measurements are per-
formed on different systems and different measurements
are performed on the same system.

4.3 Several observers

It was pointed out at the beginning that the assumption
of Process 1 (or the collapse of wave function) would
lead to self-contradiction when there are more than one
observers. There is no such contradiction in the many-
worlds theory. Let us consider the situation where there
are multiple observers. Three different cases are to be
considered.

Case 1 Two observers observe the same quantity in the
same system.

Observers O1 and O2 are to observe the quantity Â
for the system S that is in the following state

|ψS〉 =
∑

j

aj |φj〉 , (4.24)

where |φj〉 is an eigenstate of Â. The observer O1 makes
the first observation; we apply Rule 1 to the initial
state |Ψ0〉 = |ψS ;ψO1

[...], ψ
O2
[...]〉 and obtain

|Ψ1〉 =
∑

j

aj |φj ;ψO1
[...,αj ]

, ψO2
[...]〉 . (4.25)

The observer O2 makes the second observation; we
apply Rule 2 and obtain

|Ψ2〉 =
∑

j,k

aj 〈φk|φj〉 |φj ;ψO1
[...,αj ]

, ψO2
[...,αk]〉

=
∑

j

aj |φj ;ψO1
[...,αj ]

, ψO2
[...,αj ]

〉 . (4.26)

This shows that the first observation by O1 leads to
splitting of different branches of worlds, and the sec-
ond observation by O2 of the same quantity causes no
splitting and furthermore O2 observes the same result
as O1. It is in accordance with our daily experience:
two observers measuring the same quantity on a given
system always obtains the same result. This result can
clearly be generalized to any number of observers.

Everett even considered the situation where the two
observers are allowed to communicate their observation
results. It does not lead to any self-contradiction and
contradiction to our daily experience.

Let us now return to the paradox in Section I. The
observer A made the measurement; the observer B did
not make the measurement directly and he obtained his
result by reading A’s notebook. In this case, we have∑

j aj |φj ;ψA
[...,αj ]

, ψB
[...,αj,A]〉, where the subscript indi-

cates that the result comes from A. In each world, the
two observers A and B always agree with each other and
have nothing to argue about. The paradox is resolved.
Case 2 Two observers measure separately two differ-
ent quantities, which are non-commuting, in the same
system.

The same initial state |Ψ0〉 and the same observation
by O1. Then the observer O2 measures the quantity B̂,
which does not commute with Â. We apply Rule 2 to
|Ψ1〉 and obtain

|Ψ̃2〉 =
∑

j,k

aj 〈ϕk|φj〉 |ϕj ;ψO1
[...,αj ]

, ψO2
[...,βk]〉 , (4.27)

where |ϕk〉 is the eigenstate of B̂. In this case, the sec-
ond observation leads to further splitting. If Â has NA

eigenstates and B̂ has NB eigenstates, then there are
NANB different worlds in total, which are represented
by the terms on the left hand side of the above equa-
tion. The measure M of the coefficients aj 〈ϕk|φj〉 gives
the probability of getting into one of the worlds if the
observations are repeated on the same system in the
same state.
Case 3 Two observers O1 and O2 measure two entan-
gled systems S1 and S2: O1 measures Â in S1 and O2

measures B̂ in S2.
For simplicity, we assume that the initial state of the

composite system of S1 and S2 is entangled

|ψS1+S2〉 =
N∑

j=1

aj |φj , ϕj〉 , (4.28)

where N ≤ NA, NB . There is no interaction between
S1 and S2 during the following observations. The total
initial state is

|Ψ0〉′ = |ψS1+S2 ;ψO1
[...], ψ

O2
[...]〉 . (4.29)

After O1 observes Â in S1, the total state becomes

|Ψ1〉′ =
N∑

j=1

aj |φj , ϕj ;ψO1
[...,αj ]

, ψO2
[...]〉 . (4.30)

There are now N different branches of worlds. The
observer O2 then observes B̂ in S2 and transforms the
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total state to

|Ψ2〉′ =
N∑

j=1

aj |φj , ϕj ;ψO1
[...,αj ]

, ψO2
[...,βj ]

〉 . (4.31)

No more splitting and there are still N different
branches of worlds. In each branch, when O1 observes
the result represented by |φj〉, O2 observes the result
represented by |ϕj〉. The observation results of O1 and
O2 are correlated. It is easy to check that if O2 observes
first and O1 second, the end state is still |Ψ2〉′. It is clear
that the observations of O1 and O2 do not influence
each other. Furthermore, if O1 repeats its measurement
of Â in S1, then the total state |Ψ2〉′ is turned into

|Ψ2〉′ =
N∑

j=1

aj |φj , ϕj ;ψO1
[...,αj ,αj ]

, ψO2
[...,βj ]

〉 . (4.32)

We would have the same total state if O1 had observed
Â in S1 twice in a row before O2 observed B̂ in S2. This
shows that in every world O1 would not know whether
O2 has made an observation on S2 or not if there is no
direct communication between them. In other words,
the entanglement in the state (4.28) cannot be used for
communication.

5 Supplementary topics

We have presented an abstract treatment of measure-
ment and observation completely within the frame-
work of quantum mechanics, which are in correspon-
dence with our experience. Upon observation and mea-
surement, there is splitting into different worlds: in
each world to an observer there appears a collapse of
wave function (or Process 1); however, with all the
worlds combined, the evolution is always unitary. This
approach has at least three advantages: (1) it is logically
self-consistent; (2) it does not involve any additional
assumption, for example, the collapse of wave function;
(3) it is completely quantum mechanical with no use of
classical concepts.

5.1 Macroscopic objects and classical mechanics

In the many-worlds theory, there is no more divide
between quantum world and classical world. Macro-
scopic objects are also described by wave functions.
However, we do experience in our daily life a classi-
cal world where macroscopic objects have definite posi-
tions and momenta, moving around according to clas-
sical mechanics. Below is a rough explanation how the
classical world emerges from quantum mechanics with
no detailed proof.

Let us first consider a simple case, the hydrogen
atom. Its wave function is essentially a product of a cen-
troid wave function and a wave function for the relative

coordinate between the proton and the electron. The
former describes the motion of the hydrogen atom as a
whole in space and time; the latter is usually a bound
state that gives us the size and shape of the hydrogen
atom. The situation is similar for macroscopic object
that we see daily. For example, the wave function of a
cannonball can be written roughly as

|ψc〉 = |g(X)〉 ⊗ |ψb
X〉 = |g(X), ψb

X〉 , (5.1)

where |g(X)〉 is a Gaussian wave function well localized
at the position X and |ψb

X〉 is the bound state giving us
the size and shape of a cannonball located at X. When
the centroid wave function |g(X)〉 evolves over a long
period of time, it can spread to occupy a large region of
space. Therefore, in the general case, the cannonball is
not necessarily well localized and its state is given by

|ψ′
c〉 =

∫
|a(X)〉 ⊗ |ψb

X〉 dX, (5.2)

where |a(X)〉 is any smooth and normalizable function.
In this general state, there is an entanglement between
the centroid position X and the rest of the coordinates
of a cannonball.

However, in most of systems, we can separate the
centroid coordinates from the coordinates for the rela-
tive motion in the Schrödinger equation; as a result,
|ψb

X〉 does not depend on X explicitly. In this case, we
can take |ψb

X〉 outside of the above integral and have
|ψ′

c〉 = |a〉 ⊗ |ψb〉. When |a〉 is not well localized, the
state |Ψ′

c〉 represents a kind of “smeared out” cannon-
ball. In contrast, we only see cannonballs with definite
positions and momenta in our daily life. This dilemma
can be resolved by noticing that cannonballs are never
truly isolated and they are constantly be observed or
measured by photons and other objects. We assume that
someone magically set up a cannonball in a superposi-
tion state of two well separated and localized Gaussians,
that is,

|ψ̃c〉 =
1√
2

( |g(X1)〉 + |g(X2)〉
) ⊗ |ψb〉 . (5.3)

The initial state of this cannonball and its observer is
|Ψc+O

0 〉 = |ψ̃c;ψO
[...]〉, where |ψO

[...]〉 is the state of an
observer, which can be photons or other physical objects
that can distinguish the difference between the positions
X1 and X2. After the interaction between the cannon-
ball and the observer (which happens in a very short
time), a splitting of worlds happens and the total state
becomes

|Ψc+O
1 〉 =

1√
2

( |g(X1);ψO
[...,X1]

〉

+ |g(X2);ψO
[...,X2]

〉 ) ⊗ |ψb〉 . (5.4)

In one world, the observer finds the cannonball well
localized at X1; in the other world, the observer finds
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the cannonball well localized at X2. This is why we do
not observe “smeared out” cannonballs. The cannonball
and other similar macroscopic objects with well localized
wave functions will move approximately according to the
classical mechanics. After a certain period of time, the
wave packet will spread out so much to cause another
splitting of worlds. The detailed account of how long a
well-localized wave packet will follow the classical tra-
jectory is given by Ehrenfest time [19]. Everett did not
use the concept of Ehrenfest time in his thesis.

5.2 Amplification processes

In our abstract discussion of measuring process in
the previous sections, we have simplified the coupling
between the system and the observer (or the appara-
tus). In reality, there is a chain of intervening systems
linking a microscopic system to a macroscopic appara-
tus. Each system in the chain of intervening systems is
correlated to its predecessor, resulting an amplification
of effects from the microscopic system to a macroscopic
apparatus.

We use Geiger counter as an example to illustrate
this amplification process. A Geiger counter contains a
large number of gas atoms that are placed in a strong
electric field. The atoms are metastable against ioniza-
tion. More importantly, the product of ionizing one gas
atom can cause ionization of more atoms in a cascad-
ing process. This chain reaction correlates large number
of gas atoms: either very few or very many of the gas
atoms are ionized at a given time.

To put the above discussion in a mathematical form,
we write the state of a Geiger counter in terms of its
individual gas atoms

|ψG〉 =
∑

ij...k

aij...k |φi, φj , . . . , φk〉 , (5.5)

where |φi, φj , . . . , φk〉 represents a state where the first
atom is in the ith state, the second atom is in the jth
state, . . . , the nth atom is in the kth state. The super-
position terms on the right-hand side of the above equa-
tions describe either large number of ionized atoms or
few ionized atoms. Due to the chain ionization, there
are almost no terms for medium-sized number of ion-
ized atoms. By choosing a medium-sized number, we
can place these superposition terms in two groups

a1 |ψ[U ]〉 =
∑

ij...k

′aij...k |φi, φj , . . . , φk〉 (5.6)

and

a2 |ψ[D]〉 =
∑

ij...k

′′aij...k |φi, φj , . . . , φk〉 . (5.7)

The primed summation is over all terms with few num-
ber of ionized atoms, and the double primed summa-
tion is over all terms with very large number of ion-
ized atoms. |ψ[D]〉 and |ψ[U ]〉 represent, respectively, two

macroscopic distinguishable states of a Geiger counter,
discharged or undischarged. As a result, the state of a
Geiger counter can be simply written as

|ψG〉 = a1 |ψ[U ]〉 + a2 |ψ[D]〉 . (5.8)

Consider a particle which is detectable by a Geiger
counter. The total initial state is

|Ψp+G
0 〉 = |ψp;ψ[U ]〉 , (5.9)

where |ψp〉 is the state of the particle. If the wave func-
tion |ψp〉 is not well localized so that it has a part |ψp

o〉
outside of the Geiger counter and the other part |ψp

i 〉
inside the Geiger counter, i.e., |ψp〉 = a |ψp

o〉 + b |ψp
i 〉.

After the particle encounters the Geiger counter, the
total state is transformed to

|Ψp+G
1 〉 = a |ψ̃p

o ;ψ[U ]〉 + b |ψ̃p
i ;ψ[D]〉 . (5.10)

We have a splitting into two worlds: in one world the
Geiger counter is discharged, and in the other one the
counter is undischarged. This is similar to the splitting
in Eq. (5.4).

5.3 Reversibility and irreversibility

In the usual treatment of quantum mechanics, there are
both Process 1 (the collapse of wave function) and Pro-
cess 2 (unitary evolution). It is obvious that Process 1 is
irreversible and Process 2 is reversible. This difference
can be quantified by introducing another information

Iρ = Tr(ρ̂ ln ρ̂), (5.11)

where ρ̂ is a density matrix of a quantum system. If
the system changes according to Process 2, we have
ρ̂′ = Uρ̂U†, which does not change Iρ since

Iρ′ = Tr
(
ρ̂′ ln ρ̂′) = Tr

[
Uρ̂U† ln(Uρ̂U†)

]

= Tr
[
Uρ̂ ln ρ̂U†] = Tr

(
ρ̂ ln ρ̂

)
= Iρ. (5.12)

For Process 1, we consider a simple case where the sys-
tem is in a pure quantum state, that is, ρ̂ = |ψ〉 〈ψ|.
The measurement is for the quantity Â, whose eigen-
functions are |φj〉. After the measurement (Process 1),
there is a probability of | 〈φj |ψ〉 |2 of the measured result
is |φj〉. This means that the density matrix becomes

ρ̂′ =
∑

j

| 〈φj |ψ〉 |2 |φj〉 〈φj | , (5.13)

and

Iρ′ =
∑

j

(
| 〈φj |ψ〉 |2 ln

(
| 〈φj |ψ〉 |2

)
≤ Iρ = 0.

(5.14)
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So, Process 1 decreases the information Iρ but never
increase it. One can prove rigorously that this is true
for any ρ̂ not just for pure states.

In the many-worlds theory, even though only Pro-
cess 2 is recognized, an observer can still feel similar
irreversibility on the subjective level. When an obser-
vation is performed, it leads to a superposition of many
different worlds. From this time forward, since the uni-
tary evolution is linear, these worlds are parallel, evolve
independently, and no longer influence each other. The
observer in each world has only information in his
world, knowing nothing about other parallel worlds. As
a result, for an observer in a given world, this process is
also irreversible since he cannot in principle get to know
the state before the measurement based on the informa-
tion available in his world. This irreversibility implies
that there is a fundamental limit on the knowledge of
the entire universe.

However, the irreversibility discussed here appears
not related to the second law of thermodynamics, which
reflects a different kind of irreversibility. There are two
ways to see the difference. First, the former is of quan-
tum nature while the latter is also valid in classical
systems. When one mixes two piles of sand of differ-
ent colors, there is clearly no quantum process involved
but the mixing is irreversible as dictated by the second
law. Second, when the universe keeps splitting into more
and more worlds, more and more systems get entangled
together. In this sense, the irreversibility associated with
the world splitting is for an open system, whereas the
second law of thermodynamics is for a closed system.
These are definitely not the final words on the relation
between the second law of thermodynamics and the split-
ting of worlds, which warrants further study. In fact,
Tegmark discussed the second law of thermodynamics
within the framework of many-worlds theory using a tri-
partite partition of the universe [8]. My personal view is
that to discuss the second law within quantum mechan-
ics one has to follow von Neumann, who defined quan-
tum entropy for pure states (different from the well-
known von Neumann entropy) and proved quantum H-
theorm [20–22].

5.4 Approximate measurement

In many situations, we have only approximate mea-
surements, where the apparatus or observer interacts
weakly with the system and for a finite time. It is
hard to understand these cases with Process 1, which
requires that all measurements result in a precise pro-
jection to an eigenstate of a measured quantity. The
position measurement appears to be the best example
to illustrate this difficulty.

In any situation, we do not know the precise position
of any particle. One possible way to understand this
with Process 1 is that the measurement indeed results
in a precise position but the observer has only impre-
cise information. This view is clearly wrong. In prac-
tice, for example, when tracking high-energy particles
with cloud chambers, we can measure the approximate
positions of a particle successively. This means that

we can predict approximately the position of a particle
with its current approximate position. If Process 1 were
true, after the measurement, the particle would be in
an eigenstate of position and its momentum would be
too uncertain to make any meaningful prediction for its
future position. This contradicts well-established exper-
imental facts. Everett has offered more detailed analysis
along this line and pointed out the inadequacy of Pro-
cess 1 in approximate measurement.

5.5 Discussion of a spin measurement example

Consider the z component of a spin-1/2 with the Stern–
Gerlach setup. In this measurement, a particle of spin-
1/2 passes through a magnetic field that is inhomoge-
neous along the z direction. The measurement is essen-
tially to couple the spin and the orbital of the same
particle. For simplicity, we keep only the coupling part
of the Hamiltonian and approximate only the constant
and linear part of the inhomogeneous field

ĤI ≈ μσ̂z(B0 + zB1), (5.15)

where μ is the magnetic moment of the particle. The
initial state of the particle is assumed to be

|Ψ0〉 = φ0(z)
(
c1 |u〉 + c2 |d〉

)
, (5.16)

where φ0(z) describes a wave packet along the z direc-
tion and |u〉 (|d〉) is the eigenfunction of σ̂z with eigen-
value 1 (-1). One can solve the Schrödinger equation.
If Δt is the time that the particle takes to traverse the
field, we have

|Ψ(Δt)〉 = φ0(z)
[
c1e

−iμ(B0+zB1)Δt/�) |u〉

+c2e
iμ(B0+zB1)Δt/�) |d〉

]
. (5.17)

This is an entangled state between the spin and the
orbital. The wave function has split into two: one
with momentum μH1Δt and the other with momen-
tum −μH1Δt. With long enough flying time, these two
parts will become well separated in space: the upper
wave packet for the spin up state |u〉 and the lower
wave packet for the spin down state |d〉. The measuring
“apparatus” here is the orbital degree of freedom of the
particle, which by all means is microscopic.

In many situations, one can regard states for com-
posite systems such as Eq. (5.17) as a non-interfering
mixture of states by ignoring phases in superposition
elements. For example, it is correct when calculating
marginal expectations for subsystems. For the state
(5.17), it is alright to regard it as a mixture if one cares
either the spin or the orbital but not both. The phase
relations between different superposition elements are
important. For this Stern–Gerlach system, it is possi-
ble to recombine the two terms in Eq. (5.17) in another
inhomogeneous magnetic field and restore the original
state in Eq. (5.16) [23]. For this to happen, one cannot
disregard the phases.
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6 Discussion

We have shown that our theory (the many-worlds the-
ory) can be put in a satisfactory correspondence with
experience, and gives us a complete conceptual model
of the universe with more than one observers. In this
theory, the wave function is a basic description of phys-
ical systems, including observers, and the probabilis-
tic assertion of quantum mechanics can be deduced
from this theory as subjective appearances to the
observers. This theory constitutes an objective frame-
work in which puzzling subjects, such as classical phe-
nomena, the measuring process, the inter-relationship
of several observers, reversibility and irreversibility, can
be investigated in a logically consistent manner.

In light of his new theory, Everett discussed in length
other interpretations of quantum mechanics existing at
his time. They are

a. The “popular” interpretation. The wave function
|ψ〉 changes continuously and deterministically with
a wave equation when the system is isolated but
changes probabilistically and abruptly upon obser-
vation.

b. The Copenhagen interpretation. The wave function
|ψ〉 is regarded as just a mathematical artifice which
one uses to make statistical predictions. All state-
ments about microscopic phenomena are meaningful
only within a classical experiment setup.

c. The “hidden variable” interpretation. The wave
function |ψ〉 is not a complete description of a sys-
tem. There are additional hidden parameters in the
correct and complete theory that is to be developed
in the future. The probability in quantum mechan-
ics is the result of our ignorance of these hidden
variables.

d. The stochastic process interpretation. In this the-
ory, physical systems are undergoing probabilistic
changes at all times. The discontinuous and proba-
bilistic “quantum jump” is not the result of obser-
vation and measurement but is fundamental to the
systems themselves.
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7 Appendices

In Everett’s long thesis, there are two appendices. In the first
one, Everett offered detailed proofs for many mathematical
relations in the main text. In the second one, he offered his
view on theoretical physics in general. Here is the summary
of the second appendix.

There are a number of interpretations of quantum
mechanics, most of which are equivalent in the sense that
they agree with all the physical experiments. To decide
among them, we must go beyond experiments and discuss
the fundamental nature and purpose of physical theories.

Every theory has two separate parts, the formal part and
the interpretive part. The formal part consists of a purely
logico-mathematical structure that consists of a collection
of symbols and rules for their manipulation. The interpre-
tive part is a set of association rules that relate the formal
symbols with the experienced world. There can be many
different theories which are logical consistent and correct in
explaining the perceived world. In this case, further criteria
such as usefulness, simplicity, comprehensiveness, pictora-
bility, etc., must be used to select the theory or the theo-
ries. In particular, simplicity refers to conceptual simplicity
not ease in use. It is harmful to the progress of physics that
a physical theory should contain no elements which do not
correspond directly to what we observe.

Part IV: The legacy of Everett’s theory

Although Everett published his short thesis in Review of
Modern Physics, a well-known and respected journal, along
with Wheeler’s supporting article [4,5], his theory of the uni-
versal wave function had received little attention for many
years [3,24]. In 1962, Everett was invited by Podolsky to a
small workshop at Xavier University, where he lectured on
his theory for the first time in public. However, this did not
mean that his theory was getting wide recognition; it only
showed that his work was not completely forgotten [3].

Everett’s theory began to be noticed widely in the
physics community only after DeWitt started to promote
it as the many-worlds theory around 1970s with Graham’s
help [1,3,24]. As a result, Everett’s theory is now widely
known as the many-worlds theory. Only a limited number of
specialists know it as the theory of the universal wave func-
tion or the “relative state” formulation of quantum mechan-
ics. Now Everett’s theory has to be mentioned in all seri-
ous discussion of the subject known as the interpretation of
quantum mechanics [25].

To celebrate the 50th anniversary of its publication in
2007, the influential magazine, Nature, put the many-worlds
theory on its July cover; and BBC produced a special pro-
gram called “Parallel worlds, Parallel lives”. This theory is
now extremely popular among non-specialists.

Among physicists, the many-worlds theory is still a
minority view but it is gaining momentum. Hawking [26]
and Gell-Mann [27] were famous names among its early
supporters. Current influential advocates include David
Deutsch [6], Max Tegmark [8], and Sean Carroll [28].
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